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Abstract

Multilingual watermarking aims to make large
language model (LLM) outputs traceable
across languages, yet current methods still fall
short. Despite claims of cross-lingual robust-
ness, they are evaluated only on high-resource
languages. We show that existing multilingual
watermarking methods are not truly multilin-
gual: they fail to remain robust under trans-
lation attacks in medium- and low-resource
languages. We trace this failure to semantic
clustering, which fails when the tokenizer vo-
cabulary contains too few full-word tokens for
a given language. To address this, we intro-
duce STEAM, a back-translation-based detec-
tion method that restores watermark strength
lost through translation. STEAM is compat-
ible with any watermarking method, robust
across different tokenizers and languages, non-
invasive, and easily extendable to new lan-
guages. With average gains of +0.19 AUC and
+40%p TPR@1% on 17 languages, STEAM
provides a simple and robust path toward fairer
watermarking across diverse languages.

1 Introduction

Recent advances in multilingual watermarking
claim to make large language model (LLM) outputs
traceable across languages. Yet existing methods
have been evaluated only on a small set of high-
resource languages, leaving open the question of
whether these techniques truly generalise to the
world’s linguistic diversity. In this work, we show
that current multilingual watermarking methods
are not truly multilingual. Their robustness weak-
ens considerably for medium- and low-resource
languages, revealing a major gap in current ap-
proaches to content provenance.

The limited robustness of multilingual water-
marking has broad consequences. Watermarking
was designed to identify LLM-generated text and
to reduce the spread of misinformation on social
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Figure 1: (a) Our goal is to evaluate the robustness of
LLM watermarks against translation attacks. (b) Our
analysis reveals that existing multilingual watermarks
fail to generalize across languages, while our approach
(STEAM ) performs consistently better across a wide
range of languages overlooked by previous work.

media and synthetic content on the web. An ad-
versary can exploit translation attacks, in which a
model generates text in one language and the con-
tent is translated into another, effectively scrubbing
the watermark and reducing its strength (He et al.,
2024; Al Ghanim et al., 2025; Han et al., 2025; Luo
et al., 2025; Chen et al., 2025). Figure 1a illustrates
a translation attack. This threat is not theoretical:
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large-scale deployed systems such as Google’s Syn-
thID (Dathathri et al., 2024), used in Gemini, Veo,
Imagen, and others, lose detectability after trans-
lation (Han et al., 2025). This vulnerability could
enable undetectable synthetic content to spread in
hundreds of languages, particularly in communities
where moderation tools are less effective.

Semantic clustering has been proposed as a mul-
tilingual extension of watermarking. It groups se-
mantically equivalent tokens (for example, ‘house’,
‘maison’, ‘casa’) into clusters and treats all tokens
in a cluster identically regarding the watermark
key (for instance, all green or all red). While this
approach performs adequately for high-resource
languages, we observe that it performs poorly for
many others. Tokenizers allocate tokens accord-
ing to language frequency in their training data,
meaning that only high-resource languages con-
tain enough whole-word tokens to be properly rep-
resented in semantic clusters. For medium- and
low-resource languages, most words are split into
subword units not represented in any cluster, which
substantially weakens the watermark. These find-
ings suggest that semantic clustering cannot scale
effectively beyond high-resource languages.

To address the limited robustness of seman-
tic clustering, we introduce STEAM (Simple
Translation-Enhanced Approach for Multilingual
watermarking), a detection-time method that uses
back-translation to recover the watermark strength
lost during translation. STEAM is non-invasive,
model-agnostic, and compatible with any existing
watermarking technique. We evaluate STEAM on
17 languages covering high-, medium-, and low-
resource settings. The results show large and con-
sistent performance gains over semantic cluster-
ing, with average improvements of +0.19 AUC and
+40.0 percentage points (%p) in TPR@1%. We
perform an extensive robustness analysis, adaptive
adversarial evaluation, and ablation study, all con-
firming STEAM’s stability and effectiveness across
diverse attack scenarios while maintaining a low
false-positive rate.

Our contributions are:

1. Extensive multilingual evaluation. We
conduct a large-scale evaluation of multilin-
gual watermarking methods across 17 high-,
medium-, and low-resource languages, un-
covering weaknesses overlooked in prior
work, which has focused exclusively on high-
resource languages.

2. Analysis of the limitations of semantic clus-
tering. We identify that the limitations of
current multilingual watermarking stem from
their core reliance on clusters of tokens.

3. STEAM: a simple, robust multilingual de-
fence. We introduce STEAM , a back-
translation-based watermark detection method
that is modular, compatible with any water-
marking technique and tokenizer, retroactively
extensible to new languages, and non-invasive
to the model output.

4. Robustness across diverse languages.
STEAM consistently outperforms existing
multilingual watermarking methods, with
improvements of up to +0.33 AUC and
+64.5%p TPR@1% across 17 languages.

2 Related Work

Depending on when the watermark is applied, LLM
watermarking techniques are generally classified
into training-time watermarking and inference-time
watermarking (also known as logit-based water-
marking) (Liu et al., 2024b). This work focuses
exclusively on the latter.

Logit-based watermarking. Logit-based water-
marking embeds a watermark by directly modify-
ing the token probability distribution (logits) dur-
ing text generation (Liu et al., 2024b). The sem-
inal approach, KGW (Kirchenbauer et al., 2023),
partitions the tokenizer vocabulary into green and
red lists using a random seed derived from a fixed
window of previous tokens and biases generation
towards green tokens. Zhao et al. (2023) proposed
Unigram Watermarking, an extension of KGW that
employs a fixed green/red partition to improve ro-
bustness against text editing and paraphrasing at-
tacks. To maintain text quality, Hu et al. (2023) in-
troduced an unbiased watermarking approach that
integrates watermarks without altering the over-
all probability distribution of the output. Several
works (Lee et al., 2024; Lu et al., 2024a; Liu and
Bu, 2024; Wu et al., 2024) further improve robust-
ness while preserving text quality.

Beyond these, ITS and EXP (Kuditipudi et al.,
2024) offer model-agnostic, distortion-free water-
marking schemes that remain robust to text manpu-
lation attacks. Our work analyses the multilingual
capabilities of these techniques and builds upon
them to develop our defence, STEAM .
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Watermarking robustness. Several studies, in-
cluding SIR (Liu et al., 2024a), SemaMark (Ren
et al., 2024), semantic-aware watermarking (Fu
et al., 2024), and SempStamp (Hou et al., 2024),
incorporate semantic information to improve the ro-
bustness of watermarks against text transformation
attacks. To achieve a balanced and context-aware
partitioning of the green and red token lists, Guo
et al. (2024) leveraged locality-sensitive hashing
(LSH) (Indyk and Motwani, 1998) to generate a se-
mantic key from contextual embeddings. Inspired
by the inherent redundancy of multimedia data,
WatME (Chen et al., 2024) embeds mutual exclu-
sion rules within the lexical space for text water-
marking. Furthermore, Luo et al. (2025) identified
watermark collision, where multiple watermarks
interact in ways that distort statistical distributions
and hinder detection.

Multilingual watermarking. While much of the
initial research focused on monolingual English
text, a growing body of work now addresses the
unique challenges of cross-lingual watermarking.
A foundational contribution in this area is X-SIR
(He et al., 2024), a direct extension of the SIR
framework designed to defend against translation
attacks. Other works have focused on evaluating
the cross-lingual robustness of existing methods.
For example, Han et al. (2025) assessed the ro-
bustness of SynthID-Text (Dathathri et al., 2024)
to meaning-preserving transformations like back-
translation. Similarly, Al Ghanim et al. (2025) con-
duct a comparative evaluation of four watermark-
ing methods: KGW, Unigram, EXP, and X-SIR.
Their analysis assesses robustness and text qual-
ity under various parameters and removal attacks
in cross-lingual settings. Although these studies
provide valuable insights, their scope is often lim-
ited to high-resource languages. Our work address
this gap by providing a more comprehensive cross-
lingual evaluation that includes an extensive set of
low- and medium-resource languages.

3 Experimental Setup

This section outlines the experimental setup used to
assess the robustness of multilingual watermarking
methods across different languages, models, and
attack scenarios.

Dataset. We base our evaluation on the English
subset of the mC4 dataset (Raffel et al., 2023), fol-
lowing the setup introduced by He et al. (2024). We

KGW X-KGW STEAM
Criterion & SIR & X-SIR (ours)

Multilingual support ✗ ✓ ✓

Non-invasive – ✗ ✓

Watermark-agnostic – ✗ ✓

Tokenizer-agnostic – ✗ ✓

New language support

Medium-resource – ~ ✓

Low-resource – ✗ ✓†

Retroactive support – ✗ ✓

Table 1: Comparison of watermarking methods and
their multilingual capabilities. Criteria definitions in
Appendix A.5.

✓ = Yes, ✗ = No, ~ = Limited, – = Not applicable
† Requires translator (low-quality translation sufficient)

sample a test set of 500 texts for all experiments.

Attacks. We evaluate watermark robustness un-
der two translation-based attacks. Unless speci-
fied otherwise, all translations are performed with
Google Translate. The first, direct translation, con-
verts English outputs into a target language and is
used in the main experiments. The second applies
multi-step translation through a pivot language (He
et al., 2024) and is reported in Appendix B.

Multilingual models. We use the following mul-
tilingual language models: Aya-23-8B (Aryabumi
et al., 2024), LLaMA-3.2-1B (Grattafiori et al.,
2024), and LLaMAX-8B (Lu et al., 2024b).

Watermarking methods. We analyse three wa-
termarking schemes. We use the standard KGW
(Kirchenbauer et al., 2023) as our primary non-
multilingual baseline. Second, we evaluate X-SIR
(He et al., 2024), a foundational work that proposes
semantic clustering for cross-lingual robustness. Fi-
nally, we introduce X-KGW, a method that applies
semantic clustering to KGW. This setup allows us
to isolate and measure the precise impact of se-
mantic clustering on watermark robustness (see
Appendix A.3 for details about X-KGW).

Evaluation metrics. We assess the strength of
the watermark using two standard binary classifica-
tion metrics: (i) Area Under the ROC Curve (AUC),
measuring the probability that a watermarked sam-
ple receives a higher detection score than a non-
watermarked one; and (ii) True Positive Rate at a
fixed False Positive Rate (TPR@1%), the propor-
tion of correctly identified watermarked texts when
the false positive rate is fixed at 1%.

3



4 Semantic Clustering Fails in Diverse
Multilingual Settings

In this section, we show that semantic clustering
is not inherently multilingual. First, it lacks ro-
bustness in unsupported languages, requiring ex-
plicit support for each language to maintain de-
tection strength. Second, attempts to extend this
support to a larger set of languages fail, especially
for medium- and low-resource cases. Finally, we
analyse why semantic clustering does not gener-
alise and identify key weaknesses that hinder its
ability to generalise effectively to truly multilingual
watermarking.

4.1 Robustness Against Unsupported
Languages

Semantic clustering has only been evaluated on the
languages it explicitly supports, so its robustness
in unsupported languages remains unknown. We
assess semantic clustering both within its originally
supported languages using a hold-out setting, and
on a broader set of unsupported ones to evaluate its
cross-lingual generalisation.

Hold-one-out setup. This experiment evaluates
how strongly X-SIR depends on its set of supported
languages to be robust. Using the same languages
as He et al. (2024), we exclude one language from
the semantic clustering and then test the method
on that withheld language. This setup allows us to
measure how much X-SIR’s robustness depends on
explicit language support. The full results for all
languages and models are provided in Appendix
B.1. We find that excluding a language from the
supported set leads to only minor average changes
in performance: AUC decreases by -0.025 and
TPR@1% by -0.036 for LLaMA-3.2 1B, and by
+0.009 and -0.015 respectively for Aya-23 8B. In
several cases, AUC even increases when a language
is removed (10 out of 16 for LLaMA-3.2 and 7 out
of 16 for Aya), revealing that X-SIR’s behaviour is
highly variable and its robustness unreliable.

New languages setup. This experiment evalu-
ates how much X-SIR relies on explicit language
support to remain robust. If there is a large enough
overlap of words between languages, supporting
all languages may not be necessary. To test this,
we extend the evaluation to the following set of
unsupported languages: Italian (it), Spanish (es),
Portuguese (pt), Polish (pl), Dutch (nl), Croatian
(hr), Czech (cs), Danish (da), Korean (ko), and Ara-

Translation
Attack X-SIR (↑) X-KGW (↑)

Type Lang. AUC TPR@1% AUC TPR@1%

High-
resource

fr 0.791 0.149 0.787 0.280
de 0.784 0.163 0.811 0.312
it 0.798 0.152 0.789 0.354
es 0.780 0.150 0.794 0.278
pt 0.779 0.176 0.778 0.330

Medium-
resource

pl 0.752 0.146 0.767 0.312
nl 0.823 0.213 0.842 0.332
ru 0.738 0.122 0.711 0.246
hi 0.616 0.056 0.739 0.194
ko 0.719 0.115 0.770 0.318
ja 0.679 0.103 0.688 0.160

Low-
resource

bn 0.622 0.055 0.711 0.180
fa 0.726 0.131 0.734 0.242
vi 0.762 0.157 0.778 0.308
iw 0.725 0.115 0.745 0.220
uk 0.738 0.148 0.731 0.222
ta 0.560 0.049 0.737 0.172

Minimum 0.560 (ta) 0.049 (ta) 0.688 (ja) 0.160 (ja)

Table 2: Even when more languages are explicitly
supported, the robustness of semantic clustering de-
creases from high- to low-resource languages. We
extend semantic clustering to 17 newly supported lan-
guages. Aya-23 8B generates a text in English, then
the translation attack is applied using each of these sup-
ported languages. Minimum indicates the worst-case
robustness, i.e., the best language for an attack. Other
models in Appendix B.3.

bic (ar). Appendix B.2 reports the performance of
X-SIR and X-KGW for Aya-23 and the other mod-
els. Overall performance remains relatively low for
X-SIR, with average AUC and TPR@1% of 0.75
and 0.14 for Aya-23 8B, and 0.675 and 0.07 for
LLaMA-3.2 1B. Similar trends are observed for X-
KGW. More importantly, several languages show
clearly weaker watermark strength: for X-SIR, Ara-
bic is the most vulnerable for Aya-23 8B (AUC of
0.687, TPR@1% of 0.093), while Portuguese and
Arabic are weakest for LLaMA-3.2 1B (AUC of
0.650, TPR@1% of 0.055). These results indicate
that even a single poorly supported language can
allow an attacker to bypass watermark detection,
highlighting the fragility of semantic-clustering-
based multilingual watermarking.

4.2 Failure to Support a Broad Range of
Languages

Since X-SIR and X-KGW are not robust against
translation to some unsupported languages, one
possible solution is to extend the set of supported
languages to cover most languages. In this section,
we show that even when more languages are explic-
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itly included, neither method achieves consistent
robustness.

To evaluate the effectiveness of semantic cluster-
ing across languages, we extend the support of X-
SIR and X-KGW to 17 languages spanning high-,
medium-, and low-resource settings (methodology
in Appendix A.4). The high-resource group in-
cludes French, German, Italian, Spanish, and Por-
tuguese; the medium-resource group includes Pol-
ish, Dutch, Russian, Hindi, Korean, and Japanese;
and the low-resource group includes Bengali, Per-
sian, Vietnamese, Hebrew, Ukrainian, and Tamil.

The results for Aya-23 8B are reported in Ta-
ble 2. For high-resource languages, X-SIR reaches
an average AUC of 0.786 and TPR@1% of 0.158,
while X-KGW achieves 0.792 and 0.311, respec-
tively. These scores drop for medium-resource
languages to 0.721 and 0.126 for X-SIR, and 0.753
and 0.260 for X-KGW. The decline continues for
low-resource languages, where X-SIR records an
average AUC of 0.689 and TPR@1% of 0.109, and
X-KGW reaches 0.739 and 0.224. This trend indi-
cates that semantic clustering robustness depends
on language resource availability.

The performance gap becomes even more
pronounced for specific low-resource languages.
Tamil (ta) represents the weakest case of X-SIR
on Aya-23 with an AUC of 0.560 and TPR@1%
of 0.049. LLaMAX-3 shares the same observation
(AUC of 0.561, TPR@1% of 0.067). Such drastic
degradation highlights that even with explicit sup-
port, X-SIR and X-KGW fail to maintain reliable
watermark detection across all languages.

These findings raise a critical question: why does
explicit language support fail to guarantee robust-
ness for semantic clustering-based watermarking?

4.3 On the Fundamental Limitations of
Semantic Clustering in Multilingual
Watermarking

Both X-SIR and X-KGW show clear weaknesses
in mid- and low-resource languages. In this sec-
tion, we argue that these limitations stem from a
fundamental property of semantic clustering: its
inability to generalise across languages due to the
uneven coverage of full-word tokens in tokenizers.

Semantic clustering assigns watermark signals
using multilingual dictionaries to group semanti-
cally equivalent words across languages (He et al.,
2024). However, the share of dictionary words
that appear as full tokens in tokenizer vocabularies
varies sharply across languages (Appendix B.5).

0 2000 4000 6000 8000 10000 12000

Number of Words in the Tokenizer Vocabulary

0.55

0.60

0.65

0.70

0.75

0.80

0.85

W
at

er
m

ar
k 

St
re

ng
th

 (A
U

C
)

llama-3.2-1B
aya-23-8B
llamax3-8B

Figure 2: Languages with larger tokenizer vocabular-
ies have higher watermark robustness. Average AUC
per language and model across three seeds. Lines are
least squared regressions.

Low-resource languages have very few full-word
tokens, as low as 0.13% with Hebrew. BPE-based
tokenizers allocate tokens by frequency in the train-
ing data, inherently favouring high-resource lan-
guages and fragmenting others into subword units
with limited semantic meaning.

Figure 2 shows the relationship between water-
mark robustness (AUC) and the number of full-
word tokens in the tokenizer vocabulary for each
language. Across all three models, we observe a
clear positive correlation: languages with higher
token coverage achieve stronger watermark robust-
ness, while those with lower coverage are far more
vulnerable. This reveals a fundamental limitation
of semantic clustering: (i) In the extreme case
where a language has no full-word tokens, X-KGW
collapses to KGW, as no token clusters can be
formed. (ii) Even multilingual tokenizers cannot
fully resolve this issue, since BPE allocation inher-
ently disadvantages underrepresented languages.
(iii) Most importantly, this vulnerability extends to
monolingual watermarking: when text generated
in one language (e.g., English) is translated into
another, the target language may contain far fewer
full-word tokens, enabling the watermark to be lost.
These findings underscore that the shortcomings
of semantic clustering are structural and cannot be
overcome by simply expanding language support
or retraining tokenizers.
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Figure 3: Overview of STEAM . A suspect text (Bengali) is back-translated into multiple supported languages
to generate a pool of candidate texts. Each candidate, including the suspect text, is evaluated using a standard
watermark detector to compute per-language z-score. STEAM outputs the highest value across normalized and
original z-scores.

5 STEAM: A Simple Back-Translation
Defence for Many Diverse Languages

To address the limitations of semantic clustering
for multilingual watermarking, we propose Simple
Translation-Enhanced Approach for Multilin-
gual watermarking (STEAM) , a novel, model-
agnostic defence method based on back-translation.
We first introduce STEAM, then evaluate its effec-
tiveness across different adversarial scenarios, and
finally analyse its robustness.

5.1 STEAM Description
The core principle of STEAM is to amplify a
potentially lost watermark signal through a multi-
lingual back-translation and signal maximization
process. To design this, a suspect text is first
processed through a pipeline where it is back-
translated to multiple supported languages to form
a pool of candidate texts. Each candidate in this set,
including the original suspect text, is then evaluated
using a standard watermark detector (e.g., KGW)
to compute their respective z-statistics, which mea-
sure the strength of the watermark signal (Kirchen-
bauer et al., 2023). From this collection of scores,
STEAM selects the maximum value, which is then
used as the decisive statistic for classification. An
overview of the STEAM pipeline is shown in Fig-
ure 3.

Z-score language normalization. The signal
maximization of STEAM is based on an assump-
tion that is violated in low-resource languages:
that a high z-score corresponds to a genuine wa-
termark signal. Due to tokenizer limitations, sin-
gle UTF-8 characters are often fragmented into
high-frequency sub-character tokens (distribution
of these tokens in Appendix B.6). For example, a

single token represents 21.5% of all tokens in our
Tamil texts for Llama 3.2, and 12.7% for Aya-23.
If one of these very frequent tokens is assigned to
the green list by the watermark key, the z-score of
any text in the corresponding language will be high.
This shift would cause STEAM to select the texts
in this language, irrespectively of its watermark
signal.

To mitigate this issue and preserve the water-
mark signal, we apply language-specific z-score
normalization before selecting the highest-scoring
back-translated text. For each language, we com-
pute the mean z-score once using a distinct vali-
dation set of 500 human-written texts translated
into that language. At test time, the correspond-
ing language-specific mean is subtracted from each
observed z-score to control for distribution shifts
across languages.

5.2 STEAM Evaluation
Comparison to semantic clustering. We evalu-
ate STEAM against semantic clustering methods to
assess its robustness under translation attacks. As
in §4.2, all methods are tested on the same set of
17 supported languages. STEAM achieves consis-
tently strong results, maintaining an average AUC
above 0.90 across all language categories, includ-
ing medium- and low-resource ones (Table 3, Ap-
pendix B.4). Compared with semantic clustering
approaches (X-SIR and X-KGW), STEAM shows
large gains: on average, +0.205 AUC and +46.6%p
TPR@1% relative to X-SIR, and +0.174 AUC
and +33.3%p TPR@1% relative to X-KGW. The
largest improvements are observed for Hindi and
Portuguese, with up to +0.333 AUC and +64.6%
TPR@1%, respectively. These gains are consis-
tent across linguistically diverse languages, con-
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Translation Attack AUC (↑) TPR@1% (↑)

Type Language KGW X-KGW X-SIR STEAM KGW X-KGW X-SIR STEAM

High-
resource

fr 0.746 0.787 0.791 0.966 0.224 0.280 0.149 0.752
de 0.730 0.811 0.784 0.958 0.224 0.312 0.163 0.684
it 0.733 0.789 0.798 0.964 0.202 0.354 0.152 0.744
es 0.717 0.794 0.780 0.965 0.232 0.278 0.150 0.712
pt 0.733 0.778 0.779 0.979 0.246 0.330 0.176 0.822

Medium-
resource

pl 0.729 0.767 0.752 0.939 0.228 0.312 0.146 0.654
nl 0.767 0.842 0.823 0.983 0.290 0.332 0.213 0.822
ru 0.667 0.711 0.738 0.934 0.158 0.246 0.122 0.510
hi 0.614 0.739 0.616 0.949 0.120 0.194 0.056 0.650
ko 0.730 0.770 0.719 0.834 0.210 0.318 0.115 0.292
ja 0.656 0.688 0.679 0.888 0.114 0.160 0.103 0.438

Low-
resource

bn 0.667 0.711 0.622 0.895 0.068 0.180 0.055 0.402
fa 0.704 0.734 0.726 0.924 0.196 0.242 0.131 0.526
vi 0.702 0.778 0.762 0.937 0.186 0.308 0.157 0.610
iw 0.716 0.745 0.725 0.942 0.172 0.220 0.115 0.560
uk 0.674 0.731 0.738 0.930 0.210 0.222 0.148 0.530
ta 0.575 0.737 0.560 0.885 0.082 0.172 0.049 0.414

Table 3: STEAM is consistently better than semantic clustering by a large margin. Watermark strength
(AUC and TPR@1%) of multilingual watermarking techniques with 17 supported languages and Aya-23 8B. Red
indicates robustness lower than the KGW baseline. Bolded is best. Other models in Appendix B.4

firming that STEAM generalises reliably beyond
high-resource settings. Unlike semantic cluster-
ing, STEAM is robust in medium- and low-resource
languages, unaffected by tokenizer limitations.

STEAM robustness to unsupported languages.
Although the baseline evaluation confirms the ef-
ficacy of STEAM under ideal conditions, a more
rigorous stress test is required to assess its robust-
ness. We investigate STEAM performance when
the set of supported languages is misspecified.

In our experimental design, we deliberately ex-
clude the ground-truth source language from the
back-translation pool. In this setup, STEAM perfor-
mance remains comparable to X-KGW and signifi-
cantly outperforms both X-SIR and the undefended
baseline in terms of AUC and TPR@1% (Table 4).
Unlike semantic clustering methods, which col-
lapse in this scenario due to their dependence on
dictionary coverage, STEAM robustness is bounded
by the diversity of its back-translation pool. Ex-
panding the set of candidate languages could fur-
ther improve its robustness, thereby increasing the
likelihood of capturing stronger watermark signals.

5.3 Robustness Analysis

Robustness to translator mismatch. The robust-
ness of STEAM should not depend on the specific
translation service used. An adversary could try to
bypass our defence by using a different translation

New
Language

AUC (↑)

KGW X-KGW X-SIR STEAM

it 0.733 0.772 0.796 0.783
es 0.717 0.807 0.754 0.779
pt 0.732 0.792 0.775 0.782
pl 0.730 0.762 0.749 0.763
nl 0.768 0.808 0.776 0.782
hr 0.706 0.757 0.726 0.769
cs 0.717 0.754 0.773 0.778
da 0.713 0.764 0.734 0.780
ko 0.732 0.754 0.729 0.749
ar 0.689 0.765 0.687 0.753

Table 4: STEAM performs on par with other mul-
tilingual methods on unsupported languages. Bolded
is best. Red indicates that the defence reduces robust-
ness (lower than the undefended KGW baseline). Full
table in Appendix B.4

system for their attack. We examine whether the
performance of STEAM remains robust when the
translation service used for the attack differs from
the one used for the defence. We compare a set-
ting where both the attack and STEAM use Google
Translate with a mismatch setting, where the attack
uses Google Translate and STEAM uses DeepSeek-
V3.2-Exp for back-translation (DeepSeek-AI et al.,
2025). Table 5 shows that the average AUC re-
mains above 0.90 in all languages, and that chang-
ing the translator actually improves detection in
all but three cases. We hypothesise that DeepSeek
produces higher-quality translations, which better
preserve the watermark signal even though the two
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Translation Attack Translator Mismatch Effect

Type Language ∆ AUC ↑ ∆ TPR@1% ↑

High-
resource

fr +0.011 +0.058
de +0.002 +0.026
it +0.012 +0.096
es +0.010 +0.082
pt -0.003 +0.004

Medium-
resource

pl +0.030 +0.096
nl +0.002 +0.024
ru +0.014 +0.190
hi +0.023 +0.106
ko +0.051 +0.088
ja -0.022 -0.044

Low-
resource

bn +0.041 +0.144
fa +0.019 +0.074
vi +0.012 +0.058
iw +0.023 +0.138
uk +0.029 +0.154
ta +0.034 +0.152

Table 5: STEAM is robust to a translator mis-
match. Positive values (green) indicates that STEAM
is more reliable when using a different translator, and
negative values a drop of robustness (red). Difference
of AUC and TPR@1% when using Google Translate
for both the translation attack and the back-translation
defense and when using Google Translate for the trans-
lation attack and DeepSeek-V3.2-Exp for the back-
translation defence. Full table in Appendix B.4.

systems differ substantially. This suggests that
our method genuinely recovers watermark strength
rather than relying on translator-specific artefacts.

Adaptive evaluation: multistep translation at-
tack. To assess the robustness of our defence un-
der adaptive attack, we introduce a stronger mul-
tistep translation attack that adds an extra trans-
lation step beyond the single-hop setup. This de-
sign prevents STEAM from relying on direct back-
translation to recover the watermark signal. In this
two-step attack, the text is first translated using the
full set of languages from §4.2, and the resulting
output is then translated again through one of three
pivot languages: German (high-resource), Korean
(medium-resource), or Bengali (low-resource) (Ap-
pendix B.4). Despite this adaptive setup, STEAM re-
mains robust, maintaining AUC values above 0.80
across all conditions, with only modest degradation
when the second pivot is Korean or Bengali. While
such multi-hop attacks can weaken other defences,
they also tend to reduce overall translation quality,
limiting their practical impact.

Ablation study. We conduct an ablation study
to assess the impact of per-language z-score nor-
malization on STEAM’s performance. This com-

Z-score
normalization

Watermark Language Pred.

AUC ↑ TPR@1% ↑ Accuracy (%) ↑

No 0.902 ±0.11 0.34 ±0.13 38.6 ±16.6

Yes (STEAM ) 0.951 ±0.03 0.64 ±0.17 83.5 ±09.0

Table 6: Ablation study. The z-score normalization in
STEAM controls for differences in green token counts
across languages. With normalization, STEAM se-
lects the correct language and yields higher watermark
strength. AUC, TPR@1%, and language prediction ac-
curacy (percentage of cases where the highest z-score
corresponds to the back-translation to the original lan-
guage), averaged over 17 languages with and without
normalization.

ponent corrects the cross-lingual differences in the
number of green tokens, which would otherwise
increase the false positive rate. Removing normal-
ization leads to only a modest AUC drop of 0.049.
But it greatly reduces correct language identifica-
tion, from 83.5% to 38.6% (Table 6). So, while
STEAM remains robust even when the language is
misidentified, normalization improves its stability
and quality.

6 Conclusion

We showed that current multilingual watermark-
ing methods fail to remain robust under translation
attacks, especially in medium- and low-resource
languages. If watermarking lacks robustness in
a given language, online content in that language
may be disproportionately affected by synthetic or
undesirable content. This risk is especially serious
for low- and medium-resource languages, which
already face a shortage of high-quality digital re-
sources and often lack effective moderation sys-
tems.

To address this, we introduced STEAM , a sim-
ple, watermark-agnostic back-translation method
that restores watermark strength lost through trans-
lation. Extensive experiments on 17 languages and
diverse attack scenarios show that STEAM achieves
consistently stronger robustness and fairness than
existing multilingual watermarking methods, par-
ticularly in medium- and low-resource settings.

Our findings highlight the need for watermarking
research to treat linguistic diversity and fairness
as core requirements, ensuring that the security
and trust of large language models extend to all
languages, not only those with abundant digital
resources.
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Limitations

While our proposed method, STEAM, demonstrates
significant improvements in multilingual water-
marking, we acknowledge several limitations that
also present avenues for future research.

Our evaluation considers a set of 17 languages,
chosen to represent diverse linguistic families.
However, this set might not be fully representative
of the linguistic diversity of the world.

STEAM demonstrates clear advantages over
prior multilingual watermarking techniques on sup-
ported languages. However, its performance on
unsupported languages remains comparable to ex-
isting methods. Nevertheless, a key strength of
STEAM is that it can easily support additional lan-
guages. We believe that a broad coverage of lan-
guages is necessary for all multilingual watermark
techniques.

The operational cost of STEAM, measured
in translation API requests, scales linearly with
the number of supported languages. While this
presents a potential scalability concern, our empir-
ical results show that the method’s performance
gains do not depend on high-cost translation ser-
vices. The use of standard, widely available tools
like Google Translate proved sufficient to achieve
consistent improvements.

Finally, the current implementation of STEAM is
specifically designed to defend against translation-
based attacks. It is not designed to counter other
significant text transformation attacks, such as para-
phrasing attacks. This focus is a deliberate choice:
STEAM is designed to be modular, allowing the
translation robustness component to operate inde-
pendently. This modularity ensures that other parts
of the watermarking pipeline are not affected and
provides a clear path for future enhancements. Fu-
ture research could focus on creating and integrat-
ing new modules to build a more holistically robust
watermarking system.

Ethical Considerations

This work has potential dual-use implications. On
one hand, studying adversarial attacks against wa-
termarking could inform malicious actors about
possible strategies to weaken watermark defences.
However, we believe the benefits outweigh these
risks.

First, our contribution is not only an analysis
but also a concrete defence (STEAM) that achieves
a high level of robustness, substantially exceed-

ing prior multilingual watermarking methods. Our
results demonstrate that STEAM provides consis-
tently strong robustness against translation attacks
across a wide range of languages.

Second, by explicitly addressing low- and
medium-resource languages, our method promotes
fairness: watermarking becomes more reliable
across diverse linguistic settings, rather than being
limited to a handful of high-resource languages.

Robust multilingual watermarking is an impor-
tant safeguard against misuse of large language
models, such as the generation and dissemination
of fake news or disinformation in less-resourced
languages where moderation tools are often weaker.
We view this work as a step toward improving the
security and trustworthiness of multilingual AI sys-
tems.
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Appendix
The appendices contain the following sections:

• Appendix A details the experimental settings,

• Appendix B contains additional experimental results,

• Appendix C contains our usage of AI assistants.

• Appendix D contains the details of our artifacts.

• Appendix E contains the contributions of the authors.

For transparency and reproducibility, our code is available on GitHub at https://github.com/
asimzz/steam

A Experimental Setting

A.1 Hyperparameters
To ensure reproducibility, we detail the hyperparameters used for both the neural network training and the
watermark generation/detection phases of our experiments.

X-SIR neural network training. The neural network component of X-SIR, which inherits its architec-
ture from SIR, was trained using the following hyperparameters:

• Architecture: The model consists of 4 layers, with an input dimension of 1024, a hidden dimension
of 500, and an output dimension of 300.

• Optimization: We used Stochastic Gradient Descent (SGD) with a learning rate of 0.006 and a
weight decay of 0.2. A StepLR scheduler with a step size of 200 and a gamma of 0.1 was employed
to adjust the learning rate during training.

• Training: The model was trained for 2000 epochs with a batch size of 32.

Watermarking scheme parameters. For the watermark generation and detection phases, the following
parameters were used for each scheme:

• KGW: We used the default parameters recommended by Kirchenbauer et al. (2023): a green list
proportion (gamma) of 0.25, a logit bias (delta) of 2.0, and the minhash seeding scheme.

• X-KGW: To create a direct comparison with XSIR, we set the context width to 1. The gamma and
delta values were kept consistent with KGW at 0.25 and 2.0, respectively.

• X-SIR: We followed the original implementation, setting the window size to 5, the chunk size to 10,
and the logit bias (delta) to 1.0. The multilingual sentence embeddings were generated using the
paraphrase-multilingual-mpnet-base-v2 model.

A.2 Computational Resources & Softwares
All experiments were conducted on a Google Cloud Platform instance of type n1-standard-4, equipped
with 4 vCPUs, 15 GB of RAM, and two NVIDIA T4 GPUs.

All translations use the Google Translate service accessed through the deep_translator Python
library, which provides a unified interface to various translation APIs. The translator mismatch experiment
in §5.3 employs the DeepSeek API for back-translation.

We used Pytorch1 as our deep learning framework (Paszke et al., 2019), with CUDA support for GPU
acceleration. In addition, we employed Hugging Face Transformers library2 (Wolf et al., 2020) to access
pretrained models and tokenizers.

1https://pytorch.org/
2https://huggingface.co/
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A.3 Description of X-KGW

X-KGW (Cross-lingual KGW) is a hybrid watermarking approach we introduce to combine the hash-
based mechanism of KGW with the semantic clustering strategy of X-SIR. Unlike KGW, which partitions
individual tokens, X-KGW operates at the cluster level. The process consists of three distinct phases:

1. Semantic cluster construction: Following the X-SIR framework, we first construct a multilingual
semantic graph using bilingual translation dictionaries. The Louvain community detection algorithm
is then applied to partition the vocabulary V into C disjoint semantic clusters, yielding a token-to-
cluster mapping m : V → 0, 1, . . . , C − 1.

2. Hash-based cluster partitioning. During text generation, at each timestep t, a context window
of preceding tokens (wt−h, . . . , wt−1) is used to compute a hash-based seed. This seed is then
employed to pseudo-randomly partition the C clusters into green and red sets, with a fraction γ
designated as green.

3. Cluster-based logit modification. Finally, a positive bias δ is applied to the logits of all tokens
belonging to clusters assigned to the green set. The model then samples the next token from this
modified probability distribution.

By combining KGW logit biasing with semantic clustering, X-KGW seeks to preserve watermark
robustness under multilingual transformations while maintaining detection accuracy.

A.4 Multilingual Dictionnaries & Language Categorization

To construct our multilingual dictionary, we relied on the MUSE dictionary (Conneau et al., 2017), the
same resource used by He et al. (2024) to build the semantic clusters. In addition to its role in dictionary-
based clustering, we used MUSE to categorize the 17 languages included in our evaluation of §4.2, §4.3,
§5.2, §5.3.

• A language was marked high-resource if it possesses extensive, non-English-centric dictionary
mappings (i.e., bidirectional dictionaries with multiple other languages in the set).

• In contrast, languages whose resources are primarily English-centric, where MUSE provides only
bidirectional dictionaries with English, were classified as either medium-resource or low-resource.
The distinction between these two groups was determined by the size (i.e., the number of word pairs)
of their respective English dictionaries.

A.5 Definitions of Multilingual Watermarking Comparison Criteria

For clarity, we provide the definitions of the criteria used in Table 1 to compare multilingual watermarking
techniques:

• Multilingual support: Designed to resist translation attacks.

• Non-invasive: Supporting multilingual does not change the logits during generation, so the text
quality is garanteed to be preserved.

• Watermark-agnostic: Can be combined with any watermarking technique without modification.

• Tokenizer-agnostic: Robustness against translation attacks does not depend on the tokenizer.

• Medium/low-resource: Robust against translation attacks to medium-/low-resource languages.

• Retroactive support: Allows adding new languages without regenerating the watermark key (red/green
tokens split). Already generated texts can be detected in the new languages.
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A.6 Prompt for DeepSeek-V3.2-Exp Translation
To use DeepSeek-V3.2-Exp as a translation engine, we designed a structured prompt format. We define:

Source language: {src_lang}
Target language: {tgt_lang}
Input text: {response}

src_lang and tgt_lang indicate the source and target language codes. We convert these codes into
their full language names using the Language class from the langcodes 3 library:

Language.make(language=src_lang).display_name()
Language.make(language=tgt_lang).display_name()

The final prompt provided to DeepSeek-V3.2-Exp:

Translate the following {Language.make(language=src_lang).display_name()}
text to {Language.make(language=tgt_lang).display_name()}:

{response}

3https://pypi.org/project/langcodes/
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B Additional Results

B.1 Hold-out languages for X-SIR

Languages AUC (↑) TPR@1% (↑)

Held-out Prompt Held-Out Supported ∆ Held-Out Supported ∆

en
fr 0.795 ±0.045 0.816 ±0.014 +0.021 0.198 ±0.049 0.149 ±0.042 -0.049
de 0.780 ±0.054 0.811 ±0.018 +0.031 0.172 ±0.047 0.168 ±0.039 -0.004
zh 0.731 ±0.020 0.669 ±0.042 -0.062 0.141 ±0.011 0.083 ±0.014 -0.058

fr
en 0.757 ±0.022 0.799 ±0.027 +0.042 0.157 ±0.016 0.139 ±0.037 -0.018
de 0.723 ±0.020 0.781 ±0.025 +0.058 0.101 ±0.029 0.156 ±0.061 +0.055
zh 0.651 ±0.026 0.638 ±0.037 -0.013 0.076 ±0.021 0.052 ±0.020 -0.024

de
en 0.736 ±0.011 0.802 ±0.020 +0.067 0.153 ±0.050 0.214 ±0.035 +0.061
fr 0.765 ±0.004 0.784 ±0.020 +0.019 0.139 ±0.068 0.118 ±0.039 -0.021
zh 0.667 ±0.041 0.642 ±0.014 -0.025 0.073 ±0.032 0.065 ±0.016 -0.008

zh
en 0.644 ±0.052 0.692 ±0.041 +0.048 0.120 ±0.046 0.111 ±0.011 -0.009
fr 0.671 ±0.072 0.714 ±0.045 +0.043 0.112 ±0.053 0.069 ±0.025 -0.043
de 0.675 ±0.048 0.701 ±0.026 +0.026 0.105 ±0.053 0.107 ±0.027 +0.002

ja
en 0.685 ±0.059 0.656 ±0.017 -0.029 0.113 ±0.024 0.070 ±0.008 -0.043
fr 0.698 ±0.038 0.670 ±0.018 -0.028 0.101 ±0.033 0.089 ±0.023 -0.012
de 0.688 ±0.037 0.669 ±0.027 -0.019 0.138 ±0.031 0.079 ±0.005 -0.059
zh 0.681 ±0.043 0.658 ±0.003 -0.023 0.110 ±0.046 0.093 ±0.016 -0.017

Table 7: Semantic clustering (XSIR) is weak for hold-out unsupported languages. ∆ measures the robustness
gains against a translation attack on a language after it has been supported by XSIR. The semantic clustering of
tokens is applied on all the original five languages of XSIR (en, fr, de, zh, ja) for supported, and on all but the
held-out language for held-out. Aya-23 8B generates a text in the Prompt language, then the translation attack is
applied on the held-out language. Red indicates that XSIR performs worst after supporting the held-out language.
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Languages AUC (↑) TPR@1% (↑)

Held-out Prompt Held-Out Supported ∆ Held-Out Supported ∆

en
fr 0.901±0.017 0.907±0.015 +0.006 0.363±0.047 0.275±0.007 -0.088
de 0.884±0.043 0.894±0.041 +0.010 0.379±0.131 0.331±0.043 -0.048
zh 0.795±0.043 0.827±0.013 +0.032 0.450±0.040 0.407±0.011 -0.043

fr
en 0.743±0.050 0.682±0.026 -0.061 0.113±0.056 0.068±0.012 -0.045
de 0.787±0.050 0.687±0.011 -0.100 0.161±0.038 0.093±0.007 -0.068
zh 0.678±0.006 0.681±0.007 +0.003 0.086±0.027 0.083±0.005 -0.003

de
en 0.693±0.017 0.692±0.043 -0.001 0.069±0.022 0.068±0.025 -0.001
fr 0.724±0.023 0.725±0.044 +0.001 0.098±0.011 0.071±0.009 -0.027
zh 0.665±0.018 0.693±0.046 +0.028 0.065±0.009 0.073±0.014 +0.008

zh
en 0.666±0.035 0.605±0.012 -0.061 0.082±0.052 0.026±0.006 -0.056
fr 0.704±0.011 0.609±0.024 -0.095 0.085±0.041 0.036±0.012 -0.049
de 0.703±0.022 0.636±0.017 -0.067 0.088±0.010 0.050±0.008 -0.038

ja

en 0.576±0.052 0.573±0.024 -0.003 0.039±0.019 0.033±0.005 -0.006
fr 0.630±0.066 0.581±0.041 -0.049 0.067±0.016 0.025±0.014 -0.042
de 0.624±0.055 0.589±0.039 -0.035 0.074±0.023 0.037±0.018 -0.037
zh 0.663±0.059 0.650±0.026 -0.013 0.121±0.065 0.075±0.040 -0.046

Table 8: Semantic clustering (XSIR) performs poorly on hold-out unsupported languages. ∆ measures the
robustness gains against a translation attack on a language after it has been supported by XSIR. The semantic
clustering of tokens is applied on all the original five languages of XSIR (en, fr, de, zh, ja) for supported, and on all
but the held-out language for held-out. LLaMA-3.2 1B generates a text in the Prompt language, then the translation
attack is applied on the held-out language. Red indicates that XSIR performs worst after supporting the held-out
language.
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B.2 Unsupported languages for X-SIR & X-KGW

New
Lang.

X-SIR (↑) X-KGW (↑)

AUC TPR@1% AUC TPR@1%

it 0.796 0.177 0.772 0.238
es 0.754 0.155 0.807 0.230
pt 0.775 0.133 0.792 0.286
pl 0.749 0.127 0.762 0.236
nl 0.776 0.164 0.808 0.314
hr 0.726 0.124 0.757 0.210
cs 0.773 0.111 0.754 0.254
da 0.734 0.161 0.764 0.266
ko 0.729 0.136 0.754 0.226
ar 0.687 0.093 0.765 0.168

Min. 0.687 (ar) 0.093 (ar) 0.754 (cs, ko) 0.168 (ar)

Table 9: Semantic clustering is weak for unsupported languages. Watermark strength (AUC and TPR@1%)
of X-SIR and X-KGW, limited to the five originally supported languages (en, fr, de, zh, ja). Aya-23 8B generates
English text, which is then translated into a new unsupported language for evaluation. Minimum marks the weakest
robustness (best attack case).

New
Lang.

X-SIR (↑) X-KGW (↑)

AUC TPR@1% AUC TPR@1%

it 0.699 0.069 0.760 0.212
es 0.665 0.076 0.744 0.222
pt 0.641 0.059 0.722 0.152
pl 0.679 0.069 0.677 0.144
nl 0.754 0.095 0.781 0.244
hr 0.660 0.066 0.733 0.162
cs 0.650 0.064 0.759 0.190
da 0.675 0.093 0.765 0.196
ko 0.673 0.062 0.672 0.124
ar 0.655 0.055 0.704 0.168

Min. 0.641 (pt) 0.055 (ar) 0.672 (ko) 0.124 (ko)

Table 10: Semantic clustering is weak for unsupported languages. Watermark strength (AUC and TPR@1%) of
X-SIR and X-KGW, limited to the five originally supported languages (en, fr, de, zh, ja). LLaMA-3.2 1B generates
English text, which is then translated into a new unsupported language for evaluation. Minimum marks the weakest
robustness (best attack case).
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New
Lang.

X-SIR (↑) X-KGW (↑)

AUC TPR@1% AUC TPR@1%

it 0.829 0.335 0.860 0.510
es 0.810 0.314 0.864 0.490
pt 0.812 0.337 0.861 0.498
pl 0.812 0.308 0.817 0.420
nl 0.845 0.351 0.896 0.584
hr 0.804 0.279 0.822 0.344
cs 0.798 0.305 0.838 0.444
da 0.832 0.357 0.871 0.436
ko 0.792 0.276 0.800 0.390
ar 0.765 0.251 0.815 0.358

Min. 0.765 (ar) 0.251 (ar) 0.800 (ko) 0.344 (hr)

Table 11: Semantic clustering is weak for unsupported languages. Watermark strength (AUC and TPR@1%) of
X-SIR and X-KGW, limited to the five originally supported languages (en, fr, de, zh, ja). LLaMAX-3 8B generates
English text, which is then translated into a new unsupported language for evaluation. Minimum marks the weakest
robustness (best attack case).

CWRA Attack Aya-23 8B (↑) LLaMA-3.2 1B (↑) LLaMAX-3 8B (↑)

New Language AUC TPR@1% AUC TPR@1% AUC TPR@1%

it 0.746 0.194 0.855 0.245 0.826 0.313
es 0.751 0.147 0.830 0.217 0.816 0.319
pt 0.781 0.179 0.854 0.244 0.827 0.336
pl 0.793 0.195 0.859 0.289 0.815 0.299
nl 0.836 0.252 0.900 0.375 0.835 0.360
hr 0.810 0.236 0.853 0.269 0.790 0.291
cs 0.785 0.180 0.835 0.201 0.787 0.309
da 0.857 0.247 0.864 0.243 0.830 0.331
ko 0.750 0.157 0.852 0.255 0.809 0.309
ar 0.704 0.209 0.822 0.222 0.771 0.286

Minimum 0.704 (ar) 0.147 (es) 0.822 (ar) 0.201 (cs) 0.771 (ar) 0.286 (ar)

Table 12: Semantic clustering (XSIR) performs inconsistently on an expanded set of supported languages.
The semantic clustering is applied using an expanded set of 17 newly supported languages. A prompt in English
is first translated into each target language. Aya-23 8B, LLaMA-3.2 1B, and LLaMAX-3 8B are then prompted
with the translated input to generate text in the target language. Finally, the CWRA attack is applied by translating
the generated text back into English. Baseline is the average on the original supported languages. Higher values
indicate better robustness. Minimum indicates the worst-case robustness, i.e., the best language for an attack.
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B.3 Supported languages for X-SIR & X-KGW

Translation Attack X-SIR (↑) X-KGW (↑)

Type Language AUC TPR@1% AUC TPR@1%

High-
resource

fr 0.702 0.085 0.719 0.166
de 0.708 0.067 0.752 0.186
it 0.712 0.111 0.750 0.230
es 0.703 0.089 0.724 0.222
pt 0.726 0.102 0.747 0.206

Medium-
resource

pl 0.657 0.065 0.703 0.188
nl 0.722 0.091 0.787 0.252
ru 0.635 0.075 0.656 0.100
hi 0.611 0.037 0.620 0.084
ko 0.673 0.055 0.701 0.154
ja 0.571 0.042 0.598 0.110

Low-
resource

bn 0.825 0.509 0.701 0.078
fa 0.584 0.055 0.673 0.086
vi 0.691 0.084 0.722 0.186
iw 0.622 0.026 0.702 0.134
uk 0.613 0.064 0.725 0.118
ta 0.749 0.095 0.672 0.108

Minimum 0.571 (ja) 0.026 (iw) 0.598 (ja) 0.078 (bn)

Table 13: Semantic clustering performs poorly on an expanded set of supported languages. The semantic
clustering is applied using an expanded set of 17 newly supported languages. LLaMA-3.2 1B generates a text in
English, then the translation attack is applied using each of these supported languages as target language. Higher
values indicate better robustness. Minimum indicates the worst-case robustness, i.e., the best language for an attack.
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Translation Attack X-SIR (↑) X-KGW (↑)

Type Language AUC TPR@1% AUC TPR@1%

High-
resource

fr 0.804 0.249 0.852 0.466
de 0.833 0.399 0.850 0.484
it 0.829 0.336 0.870 0.478
es 0.811 0.319 0.869 0.506
pt 0.726 0.338 0.863 0.454

Medium-
resource

pl 0.812 0.308 0.847 0.410
nl 0.847 0.355 0.882 0.592
ru 0.787 0.256 0.821 0.368
hi 0.702 0.215 0.714 0.228
ko 0.792 0.276 0.822 0.422
ja 0.714 0.187 0.705 0.206

Low-
resource

bn 0.588 0.086 0.765 0.244
fa 0.755 0.268 0.829 0.398
vi 0.772 0.238 0.802 0.328
iw 0.719 0.196 0.808 0.444
uk 0.794 0.309 0.817 0.118
ta 0.561 0.067 0.789 0.316

Minimum 0.561 (ta) 0.067 (ta) 0.705 (ja) 0.118 (uk)

Table 14: Semantic clustering performs poorly on an expanded set of supported languages. The semantic
clustering is applied using an expanded set of 17 newly supported languages. LLaMAX-3 8B generates a text in
English, then the translation attack is applied using each of these supported languages as target language. Higher
values indicate better robustness. Minimum indicates the worst-case robustness, i.e., the best language for an attack.

CWRA Attack Aya-23 8B (↑) LLaMA-3.2 1B (↑) LLaMAX-3 8B (↑)

Type Language AUC TPR@1% AUC TPR@1% AUC TPR@1%

High-
resource

fr 0.831 0.201 0.898 0.421 0.845 0.345
de 0.820 0.198 0.902 0.394 0.841 0.361
it 0.817 0.196 0.872 0.331 0.825 0.315
es 0.819 0.200 0.859 0.281 0.816 0.320
pt 0.801 0.191 0.876 0.348 0.827 0.335

Medium-
resource

pl 0.804 0.202 0.881 0.381 0.815 0.291
nl 0.859 0.265 0.899 0.434 0.834 0.367
ru 0.769 0.175 0.824 0.226 0.771 0.233
hi 0.710 0.147 0.771 0.304 0.744 0.263
ko 0.769 0.178 0.854 0.340 0.805 0.299
ja 0.787 0.278 0.904 0.644 0.720 0.314

Low-
resource

bn 0.721 0.255 0.934 0.628 0.784 0.354
fa 0.691 0.113 0.796 0.260 0.733 0.246
vi 0.781 0.180 0.865 0.325 0.805 0.301
iw 0.726 0.124 0.815 0.207 0.729 0.245
uk 0.769 0.157 0.849 0.253 0.750 0.225
ta 0.819 0.405 0.917 0.516 0.740 0.391

Minimum 0.691 (fa) 0.113 (fa) 0.771 (hi) 0.207 (iw) 0.720 (ja) 0.225 (uk)

Table 15: Semantic clustering (XSIR) performs inconsistently on an expanded set of supported languages.
The semantic clustering is applied using an expanded set of 17 newly supported languages. A prompt in English
is first translated into each target language. Aya-23 8B, LLaMA-3.2 1B, and LLaMAX-3 8B are then prompted
with the translated input to generate text in the target language. Finally, the CWRA attack is applied by translating
the generated text back into English. Higher values indicate better robustness. Minimum indicates the worst-case
robustness, i.e., the best language for an attack.
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B.4 STEAM

Translation Attack AUC (↑) TPR@1% (↑)

Type Language KGW X-KGW X-SIR STEAM KGW X-KGW X-SIR STEAM

High-
resource

fr 0.655 0.719 0.702 0.973 0.052 0.166 0.085 0.770
de 0.649 0.752 0.708 0.963 0.090 0.186 0.067 0.722
it 0.617 0.750 0.712 0.972 0.118 0.230 0.111 0.770
es 0.616 0.724 0.703 0.973 0.122 0.222 0.089 0.774
pt 0.651 0.747 0.726 0.981 0.096 0.206 0.102 0.880

Medium-
resource

pl 0.622 0.703 0.657 0.964 0.088 0.188 0.065 0.704
nl 0.719 0.787 0.722 0.988 0.126 0.252 0.091 0.850
ru 0.629 0.656 0.635 0.934 0.052 0.100 0.075 0.536
hi 0.568 0.620 0.611 0.969 0.048 0.084 0.037 0.710
ko 0.625 0.701 0.673 0.878 0.068 0.154 0.055 0.330
ja 0.578 0.598 0.571 0.938 0.048 0.110 0.042 0.580

Low-
resource

bn 0.574 0.701 0.825 0.921 0.020 0.078 0.509 0.438
fa 0.586 0.673 0.584 0.940 0.082 0.086 0.055 0.528
vi 0.658 0.722 0.691 0.948 0.082 0.186 0.084 0.576
iw 0.495 0.702 0.622 0.942 0.042 0.134 0.026 0.688
uk 0.629 0.725 0.613 0.953 0.084 0.118 0.064 0.672
ta 0.877 0.672 0.749 0.913 0.272 0.108 0.095 0.302

Table 16: STEAM is consistently better than semantic clustering by a large margin. Watermark strength
(AUC and TPR@1%) of multilingual watermarking techniques with 17 supported languages and LLaMA-3.2 1B.
Red indicates that the defence reduces robustness (lower than the undefended KGW baseline). Bolded is best.

New
Lang.

AUC (↑) TPR@1% (↑)

KGW X-KGW X-SIR STEAM KGW X-KGW X-SIR STEAM

it 0.733 0.772 0.796 0.783 0.202 0.238 0.177 0.254
es 0.717 0.807 0.754 0.779 0.232 0.230 0.155 0.204
pt 0.732 0.792 0.775 0.782 0.242 0.286 0.133 0.284
pl 0.730 0.762 0.749 0.763 0.248 0.236 0.127 0.264
nl 0.768 0.808 0.776 0.782 0.286 0.314 0.164 0.266
hr 0.706 0.757 0.726 0.769 0.194 0.210 0.124 0.258
cs 0.717 0.754 0.773 0.778 0.212 0.254 0.111 0.224
da 0.713 0.764 0.734 0.780 0.196 0.266 0.161 0.248
ko 0.732 0.754 0.729 0.749 0.220 0.226 0.136 0.220
ar 0.689 0.765 0.687 0.753 0.186 0.168 0.093 0.186

Table 17: STEAM performs on par with other multilingual methods on unsupported languages. Watermark
strength (AUC and TPR@1%) of multilingual watermarking techniques with 10 unsupported languages and Aya-23
8B. Red indicates that the defence reduces robustness (lower than the undefended KGW baseline). Bolded is best
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New
Lang.

AUC (↑) TPR@1% (↑)

KGW X-KGW X-SIR STEAM KGW X-KGW X-SIR STEAM

it 0.620 0.760 0.699 0.708 0.108 0.212 0.069 0.096
es 0.616 0.744 0.665 0.693 0.122 0.222 0.076 0.082
pt 0.652 0.722 0.641 0.693 0.096 0.152 0.059 0.096
pl 0.617 0.677 0.679 0.682 0.088 0.144 0.069 0.112
nl 0.714 0.781 0.754 0.693 0.112 0.244 0.095 0.110
hr 0.611 0.733 0.660 0.690 0.078 0.162 0.066 0.100
cs 0.655 0.759 0.650 0.681 0.072 0.190 0.064 0.068
da 0.655 0.765 0.675 0.721 0.080 0.196 0.093 0.068
ko 0.623 0.672 0.673 0.670 0.066 0.124 0.062 0.064
ar 0.635 0.704 0.655 0.670 0.110 0.168 0.055 0.078

Table 18: STEAM performs on par with other multilingual methods on unsupported languages. Watermark
strength (AUC and TPR@1%) of multilingual watermarking techniques with 10 unsupported languages and LLaMA-
3.2 1B. Bold marks the best per row; red indicates a defended score lower than the KGW baseline.

Translation Attack AUC (↑) TPR@1% (↑)

Type Language Same Different ∆ Same Different ∆

High-
resource

fr 0.966 0.977 +0.011 0.752 0.810 +0.058
de 0.958 0.960 +0.002 0.684 0.710 +0.026
it 0.964 0.976 +0.012 0.744 0.840 +0.096
es 0.965 0.975 +0.010 0.712 0.794 +0.082
pt 0.979 0.976 -0.003 0.822 0.826 +0.004

Medium-
resource

pl 0.939 0.969 +0.030 0.654 0.750 +0.096
nl 0.983 0.985 +0.002 0.822 0.846 +0.024
ru 0.934 0.948 +0.014 0.510 0.700 +0.190
hi 0.949 0.972 +0.023 0.650 0.756 +0.106
ko 0.834 0.885 +0.051 0.292 0.380 +0.088
ja 0.888 0.866 -0.022 0.438 0.394 -0.044

Low-
resource

bn 0.895 0.936 +0.041 0.402 0.546 +0.144
fa 0.924 0.943 +0.019 0.526 0.600 +0.074
vi 0.937 0.949 +0.012 0.610 0.668 +0.058
iw 0.942 0.965 +0.023 0.560 0.698 +0.138
uk 0.930 0.959 +0.029 0.530 0.684 +0.154
ta 0.885 0.919 +0.034 0.414 0.566 +0.152

Table 19: STEAM is robust to a translator mismatch. AUC and TPR@1% when using Google Translate
for both the translation attack and the back-translation defense (same) and when using Google Translate for the
translation attack and DeepSeek-V3.2-Exp for the back-translation defence (different).

Two-Step Translation Attack STEAM

Language 1 Language 2 AUC ↑ TPR@1% ↑

High-
resource

None 0.966 0.743
de 0.909 0.500
ko 0.807 0.227
bn 0.847 0.332

Medium-
resource

None 0.936 0.561
de 0.865 0.357
ko 0.801 0.228
bn 0.815 0.278

Low-
resource

None 0.922 0.502
de 0.844 0.319
ko 0.794 0.212
bn 0.813 0.265

Table 20: STEAM remains robust under multi-step attacks. Aya-23 8B generates text in English that is
translated to the 17 supported languages (Language 1). A second translation step is then applied using Language 2
to compute the AUC and TPR@1%. None indicates the single-step translation baseline.
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B.5 Tokenizer vocabulary analysis
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Figure 4: Tokenizer vocabulary favours high-resource languages. Percentage of words in multilingual dictionaries
that appear in the tokenizer vocabulary.

B.6 Sub-character Token Distributions
As discussed in §5.1, the z-score normalization component is designed to calibrate STEAM’s detection
mechanism against statistical noise introduced by tokenizer limitations. Figures 5 and 6 show the token
distribution for two severely affected low-resource languages, Bengali and Tamil.
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Figure 5: Tokenization of low-resource languages creates highly concentrated sub-character tokens. Percentage
of top 10 tokens for Bengali (a) and for Tamil (b) using Aya-23 8B.
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Figure 6: Tokenization of low-resource languages creates highly concentrated sub-character tokens. Percentage
of top 10 tokens for Bengali (a) and for Tamil (b) using LLaMA-3.2 1B.
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C Usage of AI Assistants

For coding-related tasks, we relied on Claude 4.5 Sonnet and GitHub Copilot. We use GPT-5 and Claude
for light editing (re-wording, grammar, proof-checking) to help writing the paper. For translation tasks in
the experimental setting of §5.3, we use DeepSeek-V3.2-Exp as the translation model.

D Artifacts

D.1 Artifacts License
All datasets, models, and code used in this work comply with their original licenses.

• MUSE Dictionary4 (Conneau et al., 2017): Released under the Creative Commons Attribu-
tion–NonCommercial 4.0 International (CC BY-NC 4.0) license. Use is restricted to non-commercial
research and requires attribution to the original authors.

• Aya-23 8B5: Released under (CC BY-NC 4.0) license.

• LLaMA-3.2 1B6: Released under the LLaMA 3.2 Community License Agreement. This license
allows research and educational use but restricts commercial deployment without explicit permission
from Meta.

• LLaMAX3 8B7: Released under the MIT License, which permits reuse, modification, and redistribu-
tion for both commercial and non-commercial purposes, provided that attribution and the original
license terms are preserved.

• DeepSeek-V3.2-Exp8: Released under the MIT License.

• mC4 Dataset9 (Raffel et al., 2023): Licensed under the Open Data Commons Attribution License
(ODC-BY). This allows redistribution, reuse, and adaptation of the dataset, provided that appropriate
credit is given.

• deep_translator10 python package: Released under the MIT License.

• openai11 python package: Released under the Apache License 2.0. This license permits use,
modification, and redistribution for both commercial and non-commercial purposes

D.2 Artifact Use Consistent With Intended Use
All datasets and models were used in line with their intended research purposes and licences. We used the
mC4 dataset (Raffel et al., 2023) and open multilingual models (Aya-23-8B, LLaMA-3.2-1B, LLaMAX-
8B) strictly for evaluation within academic settings. No data or model outputs were used for deployment
or commercial applications. Our method STEAM is released only for research use and is compatible with
the original access conditions of all components. No personal data were processed.

4https://github.com/facebookresearch/MUSE?tab=License-1-ov-file
5https://huggingface.co/CohereLabs/aya-23-8B
6https://huggingface.co/meta-llama/Llama-3.2-1B/blob/main/LICENSE.txt
7https://huggingface.co/LLaMAX/LLaMAX3-8B
8https://huggingface.co/deepseek-ai/DeepSeek-V3.2-Exp
9https://huggingface.co/datasets/allenai/c4

10https://deep-translator.readthedocs.io/en/latest/README.html
11https://pypi.org/project/openai/?utm_source=chatgpt.com
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