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Part I

Quality Assurance for Machine Learning:
A Gentle Introduction
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Crowd face recognition system
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Machine learning

• Machine learning: a subfield of artificial 
intelligence building “methods that 'learn', that is, 
methods that leverage data to improve 
performance on some set of tasks” (Tom Mitchell)

Machine Learning

Artificial Intelligence
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Machine learning software can be inaccurate and fooled
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Software testing

Software testing, as defined in the ANSI/IEEE 1059 standard:

“A process of analyzing a software item to detect the
differences between existing and required conditions (that is
defects/errors/bugs) and to evaluate the features of the
software item”
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Machine learning basics
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Circle

Training examples

Star
Circle

Training labels

ML model

1) Train phase

Learning 
algorithm

Feature Vector
(f1, f2, …, fn)
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Machine learning basics
1) Train phase

2) Test phase

Unseen test data

ML model

Decision

Star

Star

Circle
Star

Circle

Training examples

Star
Circle

Training labels

ML modelLearning 
algorithm

Feature Vector
(f1, f2, …, fn)
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Why testing machine learning software for?

Fairness Robustness

Two categories of defects in machine learning software:
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Fairness

Apple Credit Card – accused of offering smaller lines of credit to women than to men

“The algorithm doesn’t even use gender as an input”

Sensitive attributes (race, gender etc.) might be learned from ML models by highly correlated attributes 

https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/
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Robustness

• “Natural” robustness: model performance once put in production

• Robustness to distribution drift

• Robustness to security threats (adversarial attacks)

“the degree to which a model’s performance changes when confronted to data unseen during training”
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Robustness to distribution drift

ML model

Train

Test

ML model
99% accurate

J

Data changes over time => model become less accurate



16

Robustness to distribution drift

ML model

ML model

Train

Test

ML model
99% accurate

J

Some years later…

56% accurate
L

Data changes over time => model become less accurate
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Robustness to distribution drift

Types of drift 
• Sudden drift
• Incremental drift
• Recurring drift

Detection
• Statistical methods
• Error rate based
• Detection model

Correction
• Periodic retraining
• Online learning

Research has successfully designed methods to detect and mitigate the effect of drifts BUT…
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Robustness to distribution drift

Types of drift 
• Sudden drift
• Incremental drift
• Recurring drift

Detection
• Statistical methods
• Error rate based
• Detection model

Correction
• Periodic retraining
• Online learning

Research has successfully designed methods to detect and mitigate the effect of drifts BUT…

… in the real world:

• Computational limitations (periodic retraining not affordable)

• Delay to acquire true labels (online learning not applicable)

• Non-immediate software deployment process (cat-and-mouse game)
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Robustness

• “Natural” robustness: model performance once put in production

• Robustness to distribution drift

• Robustness to security threats (adversarial attacks)

“the degree to which a model’s performance changes when confronted to data unseen during training”
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Robustness to adversarial attacks

Evasion attacks
Poisoning attacks
Trojans attacks
Backdoors attack
…

The data themselves are a threat to ML software correctness:

works at “test” time

works at training time
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Poisoning attack

Poisoning attack

• Tay bot used the interactions with its Twitter users as training data
• By repeatedly interacting with Tay using racist and offensive language, they 

were able to bias Tay's dataset towards that language as well
• Within 24 hours of its deployment, Tay had to be decommissioned
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Evasion attack and adversarial examples

Small adversarial noiseOriginal example

What humans still see

Adversarial example

Gibbon

What ML predicts: “Gibbon”
(99% confidence)

ML predicts: 
“Panda”

(80% confidence)

"Explaining and Harnessing Adversarial Examples", Goodfelow et al., ICLR 2015.
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Carlini, Nicholas, and David Wagner. "Audio adversarial examples: Targeted attacks on speech-to-text." 
2018 IEEE Security and Privacy Workshops (SPW). IEEE, 2018.

“later we simply let 
life proceed in its 
own direction toward 
its own fate”

“the boy looked out at 
the horizon”

Adversarial examples beyond pixels
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Adversarial examples in the physical world

Crowd face recognition system
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Transaction 1

Transaction 2

Transaction …

Transaction n

T= Transaction 
n+1

Incoming 
transaction

Feature vector
[f1, f2, f3, f4, f5]

ML Model

Feature vector

Transaction 2

Accept Reject 

Evasion attack goal
Make the smallest change in transaction n+1

Such that the decision changes from reject to accept 

Client history

My focus: adversarial examples in the real world 
Automated decision software in finance
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Learning from adversarial examples

Adversarial set
(x’(i), y(i)); i = {1, …, m} 

Generating adversarial examples is useful to:

• Discover the limits of ML software (corner case testing)

• Improve the software via adversarial training
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Machine learning software can be inaccurate and fooled

… also in the real world

… and regulations are coming 
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Ethics guidelines for trustworthy AI – European 
Commission (2019)
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EU AI ACT (2021)
A proposed European law on artificial intelligence (AI)



Part II

Adversarial Examples in Real-World Software
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Research Questions

RQ1. Are real-world machine learning software
vulnerable to evasion attacks?

RQ2. How to effectively defend these software?
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Evasion attack and adversarial examples

Small adversarial noiseOriginal example

What humans still see

Adversarial example

Gibbon

What ML predicts: “Gibbon”
(99% confidence)

ML predicts: 
“Panda”

(80% confidence)

"Explaining and Harnessing Adversarial Examples", Goodfelow et al., ICLR 2015.
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Image modified from https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3

Objective: for 𝑥 find 𝛿

ü With 𝑓 𝑥 ≠ 𝑓(𝑥 + 𝛿)

ü With 𝐿! 𝑥, 𝑥 + 𝛿 < 𝜖

Gradient-based attack algorithm

X
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𝑥!"# = Clip$,&(𝑥!+𝛼 𝑛𝑜𝑟𝑚( ∇$!(𝐿(𝜃' , 𝑥! , 𝑦)))

Loss functionGradient of the loss around 
𝑥! the “slope”

Step size

Project back on the hypervolume
Such that 𝐷 𝑥, 𝑥" ≤ 𝜖

Projected Gradient Descent (PGD)

model parameters

current example

original label

Iteratively compute:

Normalize the gradient
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Evasion attack in real-world software

ML model is integrated in a larger software system that takes as input domain objects.

Client history

Transaction 1

Transaction 2

Transaction …

Transaction n

T= Transaction n+1

Incoming 
transaction

Feature vector
[f1, f2, f3, f4, f5]

ML ModelFeature vector

domain object

𝜑: 𝑍 → 𝒳 ⊆ ℝ#

Domain object Space 𝑍
respects some natural conditions

Feature space 𝒳$
respects a set of constraints Ω

𝑜𝑝𝑒𝑛_𝑎𝑐𝑐 ≤ 𝑡𝑜𝑡𝑎𝑙_𝑎𝑐𝑐

𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑚𝑒𝑛𝑡 = 𝑙𝑜𝑎𝑚_𝑎𝑚𝑜𝑢𝑛𝑡 ×
𝑖𝑛𝑡_𝑟𝑎𝑡𝑒× 1 + 𝑖𝑛𝑡_𝑟𝑎𝑡𝑒 !"#$

1 + 𝑖𝑛𝑡_𝑟𝑎𝑡𝑒 !"#$ − 1
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Input validation as a first line of defense

Small adversarial noise δ

[f1, f2, f3, f4, f5]

Feature 
vector

Transaction 
denied

Constraints checker

0% success rate from traditional evasion attacks
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Image modified from https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3

Objective: for 𝑥 find 𝛿

ü With 𝑓 𝑥 ≠ 𝑓(𝑥 + 𝛿)

ü With 𝐿! 𝑥, 𝑥 + 𝛿 < 𝜖

Existing attacks generate infeasible examples!
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Objective: for 𝑥 find 𝛿

ü With 𝑓 𝑥 ≠ 𝑓(𝑥 + 𝛿)

ü With 𝐿!(𝑥, 𝑥 + 𝛿) < 𝜖

ü 𝑥 + 𝛿 ∈ 𝒳/

Existing attacks generate infeasible examples!
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Our Contributions

A unified framework for adversarial attack and defense in constrained feature space

Constrained PGD
Multi-Objective Evolutionary
Adversarial Attack (MoEvA2)

Three constrained evasion attacks

Generic constraints language

X

PGD + “Repair”
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Encoding constraints as a penalty function

Mapping to penalty functions

Sufficient expressiveness to instantiate 
constraints in different domains

Constraint is satisfied if and only if 𝒈 𝝎, 𝒙 = 𝟎

Constraint grammar

𝒇 ∈ 𝑭 is the value of feature 𝑓 for a given input 𝑥′,
𝒄 is a constant real value,
𝝎,𝝎𝟏, 𝝎𝟐 are constraint formulae,
≽∈ <,≤,=,≠,≥,> ,
𝝍,𝝍𝟏, … , 𝝍𝒌 are numeric expressions,
⊕∈ +,−,∗, \ , and 
𝒙𝒊 is the value of the 𝑖)* feature of the clean input 𝑥
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Approach 1: Vanilla PGD + “Repair”

1) Apply PGD 2) Project the solution back to the feasible space
(using mathematical programming solver)
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Approach 2: Constrained PGD: gradient-based constraint satisfaction

Constraints regularization

Projected Gradient Descent (PGD)

X

Should be differentiable 
and ideally convex 
to increase convergence likelihood!

∇!!𝐿 𝜃" , 𝑥# , 𝑦 − ∇!!𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥#)

𝑥#$% = Clip!,'(𝑥#+𝛼 𝑛𝑜𝑟𝑚( ∇!!(𝐿(𝜃" , 𝑥# , 𝑦)))
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Approach 2: Constrained PGD: gradient-based constraint satisfaction

Constraints regularization

Projected Gradient Descent (PGD)

X

Constrained Projected Gradient Descent (C-PGD) 

𝑥#$% = Clip!,'(𝑥#+𝛼 𝑛𝑜𝑟𝑚 ∇!!𝐿 𝜃" , 𝑥# , 𝑦) − ∇!!𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥#

∇!!𝐿 𝜃" , 𝑥# , 𝑦 − ∇!!𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥#)

𝑥#$% = Clip!,'(𝑥#+𝛼 𝑛𝑜𝑟𝑚( ∇!!(𝐿(𝜃" , 𝑥# , 𝑦)))
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Approach 3: Multi-Objective Evolutionary Adversarial Attack (MoEvA2)

Multi-objective genetic algorithm (NSGA-III)

𝑚𝑎𝑥𝑖𝑚𝑖𝑠𝑒 𝑔! 𝑥 ≡ 𝐿(𝜃" , 𝑥, 𝑦)

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑔# 𝑥 ≡ 𝐿$(𝑥 − 𝑥%)

𝑚𝑖𝑛𝑖𝑚𝑖𝑠𝑒 𝑔& 𝑥 ≡ 4
(" ∈ *

𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥, 𝜔+)
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How effective are our approaches at generating adversarial examples?

Neural Network

Random Forest

Attacks unaware of domain 
constraints most often fail.

C-PGD worked on a single
dataset (out of two).

MoEvA2 has successfully 
attacked all models.

*

*

*

*

* Extended to random forest

Success rate

REP.

REP.
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How to increase robustness?

Adversarial retraining



47

How to increase robustness?

We hypothesize that augmenting 𝛀 with a set of engineered constraints can robustify a model.

We engineer a new feature 
𝑓, = 𝑓#⊕𝑓-

We have the new constraint 
𝜔, ⊨ (𝑓, = 𝑓#⊕𝑓-)
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How effective are defense techniques ?

Success rate of C-PGD and MoEvA2 after adversarial retraining and constraint
augmentation (on neural networks). For a fair comparison, the model denoted
by the same symbols (* or †) are trained with the same number of adversarial
examples, generated from the same original samples.
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How effective are defense techniques ?

Success rate of C-PGD and MoEvA2 after adversarial retraining and constraint
augmentation (on neural networks). For a fair comparison, the model denoted
by the same symbols (* or †) are trained with the same number of adversarial
examples, generated from the same original samples.

Constraint augmentation is an effective 
alternative defense to adversarial retraining.

Constraint augmentation and adversarial
retraining have complementary effects. 

Adversarial training remains effective in 
constrained feature space
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Conclusion

C-PGD MoEvA2

Constrained Attacks

𝜔! ⊨ (𝑓! = 𝑓"⊕𝑓#)

New defense method as effective as 
adversarial retraining and complementary

Constrained Augmentation

X
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Our related work…

From white-box to black-box threat models: 
transferability of adversarial examples
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Defense at low cost: using infeasible examples to 
protect against real-world attacks

Our related work…



Time for Q&A!

THANK YOU

maxime.cordy@uni.lu


