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The Apple Card Didn't 'See' Gender—and
That's the Problem

The way its algorithm determines credit lines makes the risk of bias more acute.

THE APPLE CREDIT card, launched in August, ran into major
problems last week when users noticed that it seemed to offer
smaller lines of credit to women than to men. The scandal
spread on Twitter, with influential techies branding the Apple
Card “fucking sexist,” “beyond f'ed up,” and so on. Even Apple’s
amiable cofounder, Steve Wosniak, wondered, more politely,
whether the card might harbor some misogynistic tendencies.
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Machine learning

Artificial Intelligence

* Machine learning: a subfield of artificial Machine Learning

intelligence building “methods that 'learn’, that is,

methods that leverage data to improve
performance on some set of tasks” (tom wmitchel)




Machine learning software can be inaccurate and fooled
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Software testing

Software testing, as defined in the ANSI/IEEE 1059 standard:

“A process of analyzing a software item to detect the
differences between existing and required conditions (that is
defects/errors/bugs) and to evaluate the {features of the
software item”



Machine learning basics

1) Train phase

Training examples| Training labels
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Machine learning basics

2) Test phase

Decision
Unseen test data

Star

q ML model




Why testing machine learning software for?

Two categories of defects in machine learning software:

(oL
M

Fairness Robustness
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Fairness

WILL KNIGHT BUSINESS NOV 19, 2819 9:15 AM

The Apple Card Didn't 'See’ Gender— .
and That's the Problem T &8

The way its algorithm determines credit lines makes the risk of bias more acute.

Apple Credit Card — accused of offering smaller lines of credit to women than to men

“The algorithm doesn’t even use gender as an input’

Sensitive attributes (race, gender etc.) might be learned from ML models by highly correlated attributes
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https://www.wired.com/story/the-apple-card-didnt-see-genderand-thats-the-problem/

Robustness

“the degree to which a model’s performance changes when confronted to data unseen during training”

» “Natural’ robustness: model performance once put in production
* Robustness to distribution drift

* Robustness to security threats (adversarial attacks)

12



Robustness

“the degree to which a model’s performance changes when confronted to data unseen during training”

« “Natural” robustness: model performance once put in production
* Robustness to distribution drift

* Robustness to security threats (adversarial attacks)
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Robustness

“the degree to which a model’s performance changes when confronted to data unseen during training”

» “Natural’ robustness: model performance once put in production
 Robustness to distribution drift

* Robustness to security threats (adversarial attacks)
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Robustness to distribution drift

Data changes over time => model become less accurate

Train

14
o
Test

i4 99% accurate
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Robustness to distribution drift

Data changes over time => model become less accurate

Train

14
o
Test

ﬁ* 99% accurate m 56% accurate
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Some years later...
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Robustness to distribution drift

Types of drift Detection Correction
« Sudden drift « Statistical methods » Periodic retraining
* Incremental drift « Error rate based * Online learning
* Recurring drift * Detection model

Research has successfully designed methods to detect and mitigate the effect of drifts BUT...
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Robustness to distribution drift

Types of drift Detection Correction
« Sudden drift « Statistical methods » Periodic retraining
* Incremental drift « Error rate based * Online learning
* Recurring drift * Detection model

Research has successfully designed methods to detect and mitigate the effect of drifts BUT...

... in the real world:

« Computational limitations (periodic retraining not affordable)
« Delay to acquire true labels (online learning not applicable)
« Non-immediate software deployment process (cat-and-mouse game)
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Robustness

“the degree to which a model’s performance changes when confronted to data unseen during training”

» “Natural’ robustness: model performance once put in production
* Robustness to distribution drift

 Robustness to security threats (adversarial attacks)
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Robustnhess to adversarial attacks (1

The data themselves are a threat to ML software correctness:

Evasion attacks
Poisoning attacks
Trojans attacks

Backdoors attack

» works at “test” time

——— Wworks at training time

20



Poisoning attack

TayandYou

@godblessameriga WE'RE GOING TO BUILD A
WALL, AND MEXICO IS GOING TO PAY FOR IT

;T.-.{fi'? Sr m . u .‘ ! a ;

Poisoning attack

« Tay bot used the interactions with its Twitter users as training data

« By repeatedly interacting with Tay using racist and offensive language, they
were able to bias Tay's dataset towards that language as well

« Within 24 hours of its deployment, Tay had to be decommissioned

21



Evasion attack and adversarial examples 1

Original example Small adversarial noise Adversarial example

What humans still see

ML predicts:
“Panda”
(80% confidence)
What ML predicts: “Gibbon”
(99% confidence)
"Explaining and Harnessing Adversarial Examples", Goodfelow et al., ICLR 2015. Gibbon
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Adversarial examples beyond pixels

,:l‘> “the boy looked out at
the horizon”

x 0.001

“later we simply let
life proceed in its

':{> own direction toward
its own fate”

Figure 1. [Illustration of our attack: given any waveform, adding a small
perturbation makes the result transcribe as any desired target phrase.

Carlini, Nicholas, and David Wagner. "Audio adversarial examples: Targeted attacks on speech-to-text."
2018 IEEE Security and Privacy Workshops (SPW). IEEE, 2018.
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Adversarial examples in the physical world
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My focus: adversarial examples in the real world
Automated decision software in finance

ML Model
Transaction 1

Transaction 2 ]
+ T= Transaction Feature vector
Transaction ... n+1 [f1, f2, f3, f4, 5]

Transaction n

|
Incoming / \

—
—

Client history transaction Feature vector Accept

Evasion attack goal
Make the smallest change in transaction n+1
Such that the decision changes from reject to accept

Reject
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Learning from adversarial examples

Generating adversarial examples is useful to:

* Discover the limits of ML software (corner case testing)

* Improve the software via adversarial training Input features
X
: Training set : Learning
D (xy0);i={1,..., m} algorithm

Prediction
y



Machine learning software can be inaccurate and fooled
... also in the real world

... and regulations are coming

27



Ethics guidelines for trustworthy Al — European
Commission (2019)

Human agency

and Oversight INDEPENDENT

HIGH-LEVEL EXPERT GROUP ON
ARTIFICIAL INTELLIGENCE

SET UP BY THE EUROPEAN COMMISSION

Accountability Technical robustness

and Safety

Societal and
Environmental
wellbeing

Privacy and Data
Governance

ETHICS GUIDELINES
FOR TRUSTWORTHY Al

[ Diversity,
| Non-Discrimination Transparency
and Fairness




EU Al ACT (2021)

A proposed European law on artificial intelligence (Al)

The Act requires providers to ensure before placing on market that their
systems conform with the essential requirements listed above, as well as to
comply with a number of other tasks including registering Al systems on a

ggm?gg% database, having an appropriate quality management system in place,26

Providers in the main will only have to demonstrate conformity by an
Brussels, 21.4.2021 ‘ . .. . . .
Cg’;}fﬁ)z 1) 206 final assessment based on internal control’i.e. self-certification (Article 43(1)(a). .

2021/0106 (COD)

Providers are tasked to ‘establish and document a post-market monitoring
system in a manner that is proportionate to the nature of the artificial

Proposal for a

intelligence technologies and the risks of the high-risk Al system’2° This
REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE

(ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION These are, unlike notified bodies, public bodies with regulatory power e.g. to require access
LEGISLATIVE ACTS
to training, validation and testing datasets used by the provider, and the: Al source code 3?
{SEC(2021) 167 final} - {SWD(2021) 84 final} - {SWD(2021) 85 final}
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Adversarial Examples in Real-World Software

Part I



Research Questions

RQ1. Are real-world machine learning software
vulnerable to evasion attacks?

RQ2. How to effectively defend these software?

31



Evasion attack and adversarial examples 1

Original example Small adversarial noise Adversarial example

What humans still see

ML predicts:
“Panda”
(80% confidence)
What ML predicts: “Gibbon”
(99% confidence)
"Explaining and Harnessing Adversarial Examples", Goodfelow et al., ICLR 2015. Gibbon
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Gradient-based attack algorithm

High
loss

Low
loss

Image modified from https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3

Obijective: for x find §
v With f(x) # f(x + 6)

v With L,(x,x + §) <€

33



Projected Gradient Descent (PGD)

Iteratively compute:

_ model parameters
Step size

Normallze the gradient

current example

/

x't = Clipy e (x'+a norm(V ¢(L(6f,x%,¥)))

7 N N

Project back on the hypervolume _
Such that D(x,x') < € Gradient of the loss around L oss function
xt the “slope”

34



Evasion attack in real-world software M

ML model is integrated in a larger software system that takes as input domain objects.

Transaction 2 .
I T= Transaction n+1 » Feature vector

=

Transaction ... [f1, 2, 13, f4, f5] ),“‘
o

Transaction n

Incoming
Client history transaction Feature vector ML Model
\ 0 ]
domain object
Domain object Space Z Feature space X
respects some natural conditions respects a set of constraints ()

open_acc < total_acc
int_ratex(1 + int_rate)te™

installment = loam_amount X
- (1 + int_rate)term — 1
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Input validation as a first line of defense

Constraints checker

TR + -

Feature Small adversarial noise &
vector

@

Transaction
Search-Based Adversarial Testing and Improvement of d ied
Constrained Credit Scoring Systems enie
- Sala;l (é‘x]l:lamwbl v _Ma_Jt(}i,mfeLCord‘))l . Metrytufl fubri) 0 (y f d .. o I . k
niversity ol Luxembour| niversity ol Luxembour| niversity ol Luxembour;
sy of Locembou vy of e sersy o Luxebour % success rate from traditional evasion attacks
Andrey Boystov Mike Papadakis Yves Le Traon
University of Luxembourg University of Luxembourg University of Luxembourg
andrey.boystov@uni.lu michail papadakis@uni.lu yves.letraon@uni.lu
Anne Goujon
BGL BNP Parisbas

ESEC/FSE 2020 -



Existing attacks generate infeasible examples!

High L .
loss Objective: for x find §
v With f(x) # f(x + 6)
v With L,(x,x + §) <€
Low
loss

Image modified from https://towardsdatascience.com/know-your-enemy-7f7c5038bdf3
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Existing attacks generate infeasible examples!

High C .
loss Objective: for x find §

v With £(x) # f(x + 8)

O——O\Q\O

v With L,(x,x + §) <€

/X+(SEXQ

Low
loss

38



Our Contributions

IJCAI|ECAI

A unified framework for adversarial attack and defense in constrained feature space VIENNA

w=wy Aws |wy Vws |11 = o | f € {1.
Yi=c| fl1 @Yz |

Constraints formulae Penalty function

High

loss
i}

Low

loss

w1 N\ wa
w1 V wa

w1 + w2
min(wy, wo)

weq!:{¢1,¢k} mln({wzelllhﬁ—wz I})

Y1 < 1o
Y1 < o
Y1 = o

max(0, 11 — o)
max (0,11 — ¥ +7)
| Y1 — 42 |

Generic constraints language

PGD + “Repair”

y

\ Mutation
Low

Multi-Objective Evolutionary
Constrained PGD Adversarial Attack (MoEvA?2)

Three constrained evasion attacks
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Encoding constraints as a penalty function

Constraint grammar Mapping to penalty functions
w=wi Aws |w1 Vws [ Y1 = o | f€{th1.. ¢k} . .
Constraints formulae Penalty function
wI:C|f‘¢1EB¢2|:Ci w1 A woy w1 + wo
w1 V w9 min(wl, CUQ)
Y eV ={¢n,... ¢} min({ey; € U:|p—1; [})
f € F is the value of feature f for a given input x/, 1 < g max (0,11 — V2)
c is a constant real value, V1 <2 maz (0, Y1 — P2 +7)
w, w1, W, are constraint formulae, Y1 =4 [ 1 =¥
FE {<, <, =, F, 2, >}, Table 1: From constraint formulae to penalty functions. 7 is an
Y, P4, ..., Py are numeric expressions, infinitesimal value.
@ € {+, —,%,\}, and
x; is the value of the i*® feature of the clean input x Constraint is satisfied if and only if g(w,x) = 0

Sufficient expressiveness to instantiate
constraints in different domains

40



Approach 1: Vanilla PGD + “Repair”

1) Apply PGD

High
loss

Low
loss

2) Project the solution back to the feasible space

(using mathematical programming solver)

|

High
loss

Low
loss

41



Approach 2: Constrained PGD: gradient-based constraint satisfaction

Projected Gradient Descent (PGD)
xt*t = Clipy e(x*+anorm(V . (L(0f, x",v)))

Constraints regularization

V. tL(6f, x5, y) — V. tpenalty(x*)
X f X

Low Should be differentiable
loss .
and ideally convex
to increase convergence likelihood!

42



Approach 2: Constrained PGD: gradient-based constraint satisfaction

High
loss

Projected Gradient Descent (PGD)
xt*t = Clipy e(x*+anorm(V . (L(0f, x",v)))

Constraints regularization

V.eL(6f,xt,y) — V,cpenalty(xt)

Low
loss

Constrained Projected Gradient Descent (C-PGD)

x™1 = Clipy (x"+a norm (thL(Hf, xt,y) — thpenalty(xt))

43



Approach 3: Multi-Objective Evolutionary Adversarial Attack (MoEvA2)

T Start

[Inmahze Population

l

@<— Evaluation

J
JF—

l
Survival ]
J

l

Selection

l

Crossover ]

l

[ Mutation ]—

Multi-objective genetic algorithm (NSGA-III)

maximise g, (x) = L(6r,x,y)

minimise g,(x) = L,(x — xo)

minimise g;(x) = 2 penalty(x, w;)

wieﬂ
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How effective are our approaches at generating adversarial examples?

Wi

%o

4

"\,
}H‘Aﬁ»

Neural Network

Random Forest

Dataset Attack Success rate
PGD 0.00
— PGD + REP. 0.00
€| LCLD - pgp 0.85
MoEvVA2 07.48
PGD 0.00 Attacks unaware of domain
L PGD + REP 0.00 constraints most often fail.
m CTU-13 - p5p 0.00
: C-PGD worked on a single
MoEvA2 100.00
_ dataset (out of two).
k
< LCLD Papernot 0.0 MoEvVAZ2 has successfully
= MoEvA2 41.51
attacked all models.
& Papernot * 0.0
m C1U-13 MoEvA?2 5.41
k&v'fl‘ Malware  apernot * 0.00
MoEvA2 39.30
Papernot * 8.50
% URL ™ MoEva2 31.89

* Extended to random forest
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How to increase robustness?

Test set 2. Test and Sample Sample set A
(300,000) > (4,000)

Training set 1. train gg\o QQ
(900,000) > % > a
3. MoEvA2

Original
model

Adversarial
training set
(< 4,000)

|
14. Retrain

G

Adversarial
trained model

Adversarial retraining

46



How to increase robustness?

We hypothesize that augmenting Q with a set of engineered constraints can robustify a model.

We engineer a new feature

fe=1H @[z

We have the new constraint

we F (fe = /1D f2)

47



How effective are defense techniques ?

— A\

(O
Defense Attack | LCLD | CTU-13
None C-PGD 9.85 0.00
None MoEvVA2 | 97.48 100.00
C-PGD Adyv. retraining * C-PGD 8.78 NA
C-PGD Ady. retraining * MoEvA?2 94.90 NA
MoEvVA2 Adyv. retraining * C-PGD 2.70 NA
MoOEvVA2 Adv. retraining * MoEvA2 | 85.20 0.8
Constraints augment. C-PGD 0.00 NA
Constraints augment. MoEvA2 | 80.43 0.00
MoEvA2 Adv. retrain. | MoEvA2 | 82.00 NA
Combined defenses MoEvA2 | 77.43 NA

Success rate of C-PGD and MoEvA2 after adversarial retraining and constraint
augmentation (on neural networks). For a fair comparison, the model denoted
by the same symbols (* or T) are trained with the same number of adversarial
examples, generated from the same original samples.
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How effective are defense techniques ?

— A\

(O
Defense Attack | LCLD | CTU-13
None C-PGD 9.85 0.00
None MoEvVA2 | 97.48 100.00
C-PGD Adyv. retraining * C-PGD 8.78 NA
C-PGD Ady. retraining * MoEvA?2 94.90 NA
MoEvVA2 Adyv. retraining * C-PGD 2.70 NA
MoOEvVA2 Adv. retraining * MoEvA2 | 85.20 0.8
Constraints augment. C-PGD 0.00 NA
Constraints augment. MoEvA2 | 80.43 0.00
MoEvA2 Adv. retrain. | MoEvA2 | 82.00 NA
Combined defenses MoEvA2 | 77.43 NA

Success rate of C-PGD and MoEvA2 after adversarial retraining and constraint
augmentation (on neural networks). For a fair comparison, the model denoted
by the same symbols (* or T) are trained with the same number of adversarial
examples, generated from the same original samples.

Adversarial training remains effective in
constrained feature space
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How effective are defense techniques ?

— A\

(O
Defense Attack | LCLD | CTU-13
None C-PGD 9.85 0.00
None MoEvVA2 | 97.48 100.00
C-PGD Adyv. retraining * C-PGD 8.78 NA
C-PGD Ady. retraining * MoEvA2 | 94.90 NA
MOoEVA?2 Adyv. retraining * C-PGD 2.70 NA
MoOEvVA2 Adv. retraining * MoEvA2 | 85.20 0.8
Constraints augment. C-PGD 0.00 NA
Constraints augment. MoEvA2 | 80.43 0.00
MoEvA2 Adv. retrain. | MoEvA2 | 82.00 NA
Combined defenses MoEvA2 | 77.43 NA

Success rate of C-PGD and MoEvA2 after adversarial retraining and constraint
augmentation (on neural networks). For a fair comparison, the model denoted
by the same symbols (* or T) are trained with the same number of adversarial
examples, generated from the same original samples.

Adversarial training remains effective in
constrained feature space

Constraint augmentation is an effective
alternative defense to adversarial retraining.
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How effective are defense techniques ?

— A\

(O
Defense Attack | LCLD | CTU-13
None C-PGD 9.85 0.00
None MoEvVA2 | 97.48 100.00
C-PGD Adyv. retraining * C-PGD 8.78 NA
C-PGD Ady. retraining * MoEvA?2 94.90 NA
MoEvVA2 Adyv. retraining * C-PGD 2.70 NA
MoOEvVA2 Adv. retraining * MoEvA2 | 85.20 0.8
Constraints augment. C-PGD 0.00 NA
Constraints augment. MoEvA2 | 80.43 0.00
MoEvA2 Adv. retrain. | MoEvA2 | 82.00 NA
Combined defenses MoEvA2 | 77.43 NA

Success rate of C-PGD and MoEvA2 after adversarial retraining and constraint
augmentation (on neural networks). For a fair comparison, the model denoted
by the same symbols (* or T) are trained with the same number of adversarial
examples, generated from the same original samples.

Adversarial training remains effective in
constrained feature space

Constraint augmentation is an effective

alternative defense to adversarial retraining.

Constraint augmentation and adversarial
retraining have complementary effects.
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Conclusion

/ Evasion attack in real-world software

ML model is integrated in a larger software system that takes as input domain objects.

pZoXSR e
P J
o= R o2 %e

a

Incoming
Client history transaction Feature vector ML Model

T
domain object

Feature space X
respects a set of constraints Q

Domain object Space Z
respects some natural conditions

open_acc < total_acc

installment = I x int_ratex(1 + int_rate)te™
installment = loam_amount X ——————————
- (1 + int_rate)ter™ — 1

~

/

/How effective are our approaches at generating adversarial examples? \

\

Dataset  Attack | c&m
PGD 0.00
= PGD + SAT 0.00
LCLD gD 9.85
MoEvA2 97.48
PGD 0.00 Attacks unaware of domain
I constraints most often fail.
& crus PODxsAT | 000
C-PGD 0100 C-PGD worked on a single
MoEvA2 100.00 i
— (out of two).
*
LcLD  Fapernot 000 MoEvA2 has successfully
— MoEvA2 41.51 o
all models.
oy Papernot * 0.0
% @ CTU-B heEvan 541
3 Papernot * 0.00
E‘P Malware  \1 Fva2 { 39.30
Random Forest " G
Papernot .5
@ URL MoEvA2 ‘ 31.89

-—@

Start
Initialize Population

Eng
@ Evaluation l—

High
loss

O_M

Survival
Selection

Crossover

\ Low pr—

C-PGD MoEvA2

et

& Constrained Attacks /

4 N

we F (fe = 1D f2)

Constrained Augmentation

New defense method as effective as

* Extended to random forest /

Qﬂversarial retraining and complementary/
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Our related work...

From white-box to black-box threat models:
transferability of adversarial examples

LGYV: Boosting Adversarial Example
Transferability from Large Geometric Vicinity

Martin Gubri!, Maxime Cordy!, Mike Papadakis®, Yves Le Traon', and
Koushik Sen?

! University of Luxembourg, Luxembourg, LU firstname.lastname@uni.lu
2 University of California, Berkeley, CA, USA

Abstract. We propose transferability from Large Geometric Vicinity
(LGV), a new technique to increase the transferability of black-box ad-
versarial attacks. LGV starts from a pretrained surrogate model and col-
lects multiple weight sets from a few additional training epochs with a
constant and high learnlng rate LGV exp101ts two geometrlc propertles

EUROPEAN CONFERENCE
ON COMPUTER VISION

TEL AVIV 2022

October 23-27, 2022

Efficient and Transferable Adversarial Examples
from Bayesian Neural Networks

Martin Gubri! Maxime Cordy' Mike Papadakis' Yves Le Traon! Koushik Sen”

University of Luxembourg, Luxembourg, LU
2University of California, Berkeley, CA, USA

Abstract

|Deterministic Transfer-based Black-box Attack | Lower success rate

Feed

E Surrogate model /-\
R Rl A
N ok .

plylx +4.6,) Plyle + 6,6,)

38th Conference on Uncertainty in ArtnF cial Intelhgence [ A
Eindhoven, Netherlands
August 1-5, 2022

An estabhshed way to 1mprove the transferabil-

P o

Target model

u
Attacy Bayesnan surrogale/Fee—d\
ransieempe

: Target model
5.6)

plylz +6,0:)

known|

Figure 1: Illustration of the proposed approach.

gan et al., 2019]. However, a common pitfall of these mod-
els is that they are vulnerable to adversarial examples, i.e., 53



Our related work...

Defense at low cost: using infeasible examples to
protect against real-world attacks

On The Empirical Effectiveness of Unrealistic Adversarial Hardening Against
Realistic Adversarial Attacks

Abstract—While the literature on security attacks and de-
fenses of Machine Learning (ML) systems mostly focuses on
unrealistic adversarial examples, recent research has raised
concern about the under-explored field of realistic adversarial
attacks and their implications on the robustness of real-world
systems. Our paper paves the way for a better understanding of
adversarial robustness against realistic attacks and makes two
major contributions. First, we conduct a study on three real-
world use cases (text classification, botnet detection, malware
detection) and five datasets in order to evaluate whether
unrealistic adversarial examples can be used to protect models
against realistic examples. Our results reveal discrepancies
across the use cases, where unrealistic examples can either
be as effective as the realistic ones or may offer only limited
improvement. Second, to explain these results, we analyze the
latent representation of the adversarial examples generated
with realistic and unrealistic attacks. We shed light on the
patterns that discriminate which unrealistic examples can be
used for effective hardening. We release our code, datasets and
models to support future research in exploring how to reduce
the gap between unrealistic and realistic adversarial attacks.

Index Terms—adversarial attacks, constrained feature space,
problem space, hardening

However, recent studies [3], [10] have shown that in
many domains, traditional adversarial attacks (e.g. PGD
[11]) cannot be used for proper robustness assessment be-
cause these attacks produce examples that are not feasible
(i.e. do not map to real-world objects). Indeed, while in
computer vision the perturbations are simply independent
pixel alterations that produce a similar image, in other
domains the produced adversarial examples should satisfy
specific domain constraints in order to represent real-world
objects.

As a result, research has developed domain-specific ad-
versarial attacks that either manipulate real objects through
a series of problem-space transformations (i.e. problem-
space attacks) or generate feature perturbations that satisfy
domain constraints (i.e. constrained feature space attacks).
These attacks produce examples that are realistic by design,
however, at the cost of an increased computational cost
compared to traditional attacks. This additional cost can be
so high that it prevents the number of examples that ML
engineers can use to assess and improve robustness.

In face of this dilemma between realism and com-
putational cost, we pose the question whether we could
improve model robustness against realistic examples through
adversarial hardening on non-realistic examples. A posi-
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Time for Q&A!




