UNIVERSITE DU
LUXEMBOURG

LGV: Boosting Adversarial Example
Transferability from Large Geometric Vicinity

Martin Gubri!, Maxime Cordy!, Mike Papadakis', Yves Le Traon!, and

Koushik Sen?
I V ! Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of
Luxembourg, Luxembourg, LU firstname.lastname@uni.lu

2 University of California, Berkeley, CA, USA

TranSfe rabl | Ity from Abstract. We propose transferability from Large Geometric Vicinity

(LGV), a new technique to increase the transferability of black-box ad-

L a r e G e O m etri C Vi Ci n it versarial attacks. LGV starts from a pretrained surrogate model and col-
g y lects multiple weight sets from a few additional training epochs with a
constant and high learning rate. LGV exploits two geometric properties

that we relate to transferability. First, models that belong to a wider

weight optimum are better surrogates. Second, we identify a subspace

able to generate an effective surrogate ensemble among this wider opti-

mum. Through extensive experiments, we show that LGV alone outper-

forms all (combinations of) four established test-time transformations by

1.8 to 59.9 percentage points. Our findings shed new light on the impor-
tance of the geometry of the weight space to explain the transferability
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LGV in a nutshell

LGV is an adversarial attack that:

improves the transferability (generalization) of adversarial examples,

simply attacks models collected along the SGD trajectory with a high learning rate,
beats (all combinations of) four state-of-the-art techniques,

exploits the geometry of the weight space to find flatter adversarial examples in

the feature space.
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Background

Adversarial examples
Worst-case distributional shift.
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Goodfellow, I. et al. (2014). Explaining and Harnessing Adversarial Examples



Background

Transferability
An adversarial example against a model is likely to be also
adversarial against another model.

Black-box attack
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Motivation

Random directions in the weight space increase transferability.

Vo L(z); y,wo + ex) with ex ~ N (0, 621},

Table 1: Success rates of random directions (RD) in the weight and feature spaces
under the Loo attack. In %.

Target
Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1 IncV3

1 DNN (baseline) 45.3+2.4 29.6+0.0 28.8+0.2 31.5+1.6 17.5+0.6 16.6+0.9 10.4+0.5 5.3+1.0
+ RD Weights 60.6+1.5 40.5+3.0 39.940.2 44,4432 22.9+0.8 22.7+0.5 13.940.2 6.6+0.7
+ RD Features 46.4+1.s 29.0+2.2 28.7+1.2 32.7+15 17.5+0.6 17.5+0.6 10.3+0.7 5.6+0.7

Random directions in the feature space do not.

V. L(x); y,wp) + €, with e} ~ N (0, 6"%1)



Random directions in the weight space increase transferability.

V. L(z); y, wo + e) with ex ~ N(0, o*1,,)

Equivalent to adding feature noise structured by local variations of input gradients in the weight space:

N(Vmﬁ(azk; Y, wo), 0 Jvmc(a:;c;y,.)(wo)Jvmﬁ(wk;yr)(w‘))T)



The vicinity

In the weight space
IS relevant for
transferability.



Model Collection
Collect models during a few epochs with a high learning rate
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Input: nepochs number of epochs, K

number of weights, 7 learning
rate, v momentum, wo pretrained
weights, D training dataset

Output: (wi,...,wx) LGV weights

i3
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w +— wo > Start from a regularly
trained DNN
for i < 1 to K do

w <+ SGD(w,n, 7, D, ZeBgke)
> Perform “22= of an epoch of
SGD with 7 learning rate and y
momentum on D

Wi < W

: end for




Adversarial example crafting
Apply classical attack on one collected model per iteration

Algorithm 2 I-FGSM Attack on LGV

Input: (z,y) natural example, (wi,...,wWk)
LGV weights, niter number of iterations, e
p-norm perturbation, « step-size

Output: x,qv adversarial example

1: Shuffle (wq,...,wk) > Shuffle weights

2 Doy B

3: for i < 1 to niter do

4: Ladv — Badv T OVl Zade; Ys Wimoa &)
> Compute the input gradient of the loss of
a randomly picked LGV model

i Zadv < DProject(radav, Be[z]) > Project
in the p-norm ball centred on x of € radius

6: Zadv  clip(adv,0,1) > Clip to pixel
range values

7: end for




Evaluation

LGV alone beats all (combinations of) four state-of-the-art techniques.

Table 1: Success rates of state-of-the-art and LGV under the Loo attack. Under-
line is best. “RD” stands for random directions in the weight space. In %.

Target
Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1l IncV3
Baselines (1 DNN)
1 DNN 45.3+2.4 29.6+0.0 28.8+0.2 31.5+1.6 17.5+0.6 16.6+0.9 10.4+05 5.3+1.0
MI 53.0+2.2 36.3+1.5 34.7+0.4 38.1+2.0 22.0+0.1 21.1+0.3 13.94+0.4 7.3+0.8
GN 63.9+2.4 43.8+2.4 43.3+1.3 47.4+0.9 24.840.3 24.1+1.0 14.6+03 6.8+1.2
GN+MI 68.4+2.3 49.3+2.5 47.9+1.2 52.1+1.7 28.4+0.8 28.0+0.7 17.5+0.5 8.7+0.5
DI 75.0+0.2 56.4+1.9 59.6+1.5 61.6+2.4 41.6+1.1 39.7+0.90 27.7+1.0 15.2+1.0
DI+MI 81.2+40.3 63.8+1.9 67.6+0.9 68.9+1.5 49.3+0.7 46.7+0.4 33.0+1.0 19.4+0.0
SGM 64.4+0.8 49.1+3.1 48.9+0.6 51.7+2.8 30.7+0.9 33.6+1.3 22.5+1.5 10.7+o0.9
SGM+MI 66.0+0.6 51.3+3.5 50.9+0.9 54.3+2.3 32.5+1.3 35.840.7 24.1+1.0 12.1+1.2
SGM-+DI 76.8+0.5 62.3+2.7 63.6+1.7 65.3+1.4 45.5+0.9 49.9+0.8 36.0+0.7 19.2+1.7

SGM+DI+MI  80.9+0.7 66.9+2.5 68.7+1.2 70.0+1.7 50.9+0.6 56.0+1.4 42.1+1.4 23.6+1.6

Our techniques
RD 60.6+1.5 40.5+3.0 39.9+0.2 44.4+3.2 22.9+0.8 22.7+0.5 13.9402 6.6+0.7
LGV-SWA 84.9+1.2 63.9+3.7 62.1+0.4 61.1+2.944.2+0.4 42.4+1.3 31.5+0.8 12.2+0.8
LGV-SWA+RD 90.2+0.5 71.7+3.4 69.9+1.2 69.1+3.3 49.9+1.0 47.4+2.0 34.9+0.3 13.5+0.9
LGV (ours) 95.4+0.1 85.542.3 83.7+1.2 82.142.4 69.3+1.0 67.8+1.2 58.11+0.8 25.3+1.0




Usage

Implemented in the forchattacks library

[ 1] from torchattacks import LGV, BIM

atk = LGV(base_model, trainloader, 1lr=0.05, epochs=10, nb_models_epoch=4,
wd=1le-4, attack_class=BIM, eps=4/255, alpha=4/255/10, steps=50)
# atk.load_models(list_models) # uncomment to load our publicly available pretrained models
atk.collect_models() # or collect models yourself
atk.save_models('models/1gv"')

report_success_rate(atk)

Phase 2: craft adversarial examples with BIM
Success rate of LGV-BIM: 97.6%

Possible to combine with any other attack
Demo notebook available



RQ Why do weights from a vicinity help to attack a model
from another vicinity?

2 keys:

1. LGV produces flatter adversarial examples.
2. The LGV subspace embeds geometric properties relevant for transferability.



Background about flatness for (natural) generalization
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Figure 1: A Conceptual Sketch of Flat and Sharp Minima. The Y-axis indicates value of the loss

function and the X-axis the variables (parameters)
Keskar, N. S., et al. (2017). On large-batch training for deep learning: Generalization gap and sharp minima. ICLR 2017




Flatter adversarial examples may be more robust to misalignment between
surrogate and target.
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LGV — Flatness in the weight space

LGV collects models in flatter regions of the weight space...

Hessian-based sharpness metrics

Table 2: Sharpness metrics in
the weight space, i.e., the largest
eigenvalue and the rank of the
Hessian, computed on three
types of surrogate and 10,000
training examples.

Hessian
Model Max EV  Trace
1 DNN 558 +57 16258 +725

LGV indiv. 168 +127 4295 +s517
LGV-SWA 30 +:1 1837 +7o
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Fig.3: Lo attack crafted on surrogate with
natural loss (up), evaluated on target (down)
with respect to the 2-norm distance along 10
random directions in the weight space from the
LGV-SWA solution (orange), random LGV
weights (purple), and the initial DNN (green).

Interpolation in the weight space
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Fig.9: Adversarial target loss (plain) and surrogate natural loss (orange dashed)
with respect to the interpolation coefficient a between the LGV-SWA solution
and the initial model.
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LGV — Flatness in the feature space

...as aresult, LGV produces adversarial examples flatter in the feature space.
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The surrogate-target (mis)alignment

LGV appears particularly well aligned with the target
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However individual LGV models do not succeed on their own...
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We consider the weight subspace defined by deviations of LGV weights from their
average,
° § = {w|w = wswa + P}, (4)

where wgswa is called the shift vector, P = (w; — wswa, . .., Wk —wswa )T is the
projection matrix of LGV weights deviations from their mean, and z € R¥.

The subspace S is:

1. Densely related to transferability, i.e., useful,

2. Composed of directions whose relative importance correlates with geometrical
properties, i.e., its geometry is relevant,

3. Useful when shifted to other solutions, i.e., its geometry captures generic
properties.



Despite the high dimensionality of the weight space, SGD updates are
concentrated in a tiny subspace

GRADIENT DESCENT HAPPENS IN A TINY SUBSPACE

Guy Gur-Ari* Daniel A. Roberts* Ethan Dyer
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Institute for Advanced Study ~ New York, NY 10003, USA  Baltimore, MD 21218, USA
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ABSTRACT

We show that in a variety of large-scale deep learning scenarios the gradient dy-
namically converges to a very small subspace after a short period of training. The
subspace is spanned by a few top eigenvectors of the Hessian (equal to the number
of classes in the dataset), and is mostly preserved over long periods of training.
A simple argument then suggests that gradient descent may happen mostly in this
subspace. We give an example of this effect in a solvable model of classification,
and we comment on possible implications for optimization and learning.



The LGV subspace is significantly better than a random subspace
— Specific relation to transferability.

Table 9: Transfer success rate of random directions sampled in LGV deviations
subspace.

Target
Norm Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1l IncV3

Loo LGV 95.5+0.1 85.542.1 83.6+1.1 82.2+2.4 69.6+1.0 67.8+0.9 58.4+0.6 25.6+1.7
Loo LGV-SWA 96.0+0.2 85.6+2.5 83.6+0.6 82.1+2.8 68.6+1.1 65.7+1.5 54.5+0.0 23.5+0.4
+ RDin S
Loo LGV-SWA 90.440.3 71.9+3.4 70.0+1.2 69.243.4 50.04+1.0 47.4+1.0 34.9+0.4 13.4+0.7
Random directions ™  +RD
. : L2 LGV 96.3+0.1 90.1+1.0 88.8+0.4 87.5+1.6 79.8+1.1 78.1+1.6 71.9+0.6 43.1+0.6
In fu” Welght space L2 LGV-SWA 96.6+0.3 90.1+1.4 88.7+0.5 87.3+2.0 77.6+1.0 75.6+1.5 67.4+1.0 37.4+0.4
vs. LGV +RDinS
L2 LGV-SWA 91.9+0.6 78.242.0 76.2+1.3 75.4+2.5 58.1+0.3 55.8+1.6 42.7+0.6 20.0+0.6

+ RD




Sampling random directions in the subspace have results close to LGV.
— Densely related to transferability

Table 9: Transfer success rate of random directions sampled in LGV deviations
subspace.

Target
Norm Surrogate RN50 RN152 RNX50 WRN50 DN201 VGG19 IncV1l IncV3

Loo LGV 95.5+0.1 85.542.1 83.6+1.1 82.2+2.4 69.6+1.0 67.8+0.9 58.4+0.6 25.6+1.7
Loo LGV-SWA 96.0+0.2 85.6+2.5 83.6+0.6 82.1+2.8 68.6+1.1 65.7+1.5 54.5+0.0 23.5+0.4

+ RDin S
Loo LGV-SWA 90.440.3 71.9+3.4 70.0+1.2 69.243.4 50.04+1.0 47.4+1.0 34.9+0.4 13.4+0.7

Random directions + RD

: L2 LGV 96.3+0.1 90.1+1.0 88.8+0.4 87.5+1.6 79.8+1.1 78.1+1.6 71.9+0.6 43.1+0.6
In LGV SUbSpace L2 LGV-SWA 96.6+0.3 90.1+1.4 88.7+0.5 87.3+2.0 77.6+1.0 75.6+1.5 67.4+1.0 37.4+0.4

vs. LGV +RDinS
L2 LGV-SWA 91.9+0.6 78.242.0 76.2+1.3 75.4+2.5 58.1+0.3 55.8+1.6 42.7+0.6 20.0+0.6

+ RD
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The subspace is composed of directions whose relative importance depends on
the functional similarity between surrogate and target.
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Fig.5: Success rate of the LGV surrogate projected on an increasing number
of dimensions with the corresponding ratio of explained variance in the weight
space. Hypothetical average cases of proportionality to variance (solid) and equal
contributions of all subspace dimensions (dashed). Scales not shared.



LGV deviations can be shifted in the weight space and significantly outperform
random directions.

Table 10: Transfer success rate of LGV deviations shifted to other independent
solutions, for target architectures in the ResNet family.

Target
Norm Surrogate RN50 RN152 RNX50 WRN50
Loo LGV-SWA + (LGV’ - LGV-SWA’) 94.310.5 81.512.3 79.141.4 78.142.4
Loo LGV-SWA + RD 90.440.3 71.943.4 70.0+1.2 69.2+43.4
Loo LGV (ours) 95.4+0.1 85.3+2.1 83.7+1.1 82.1+25
Loo 1DNN + v (LGV’ - LGV-SWA’) 73.3+2.0 52.842.9 52.611.6 56.612.8
Loo 1 DNN + RD 60.8+1.6 40.8+2.7 40.2+0.3 44.8+2.7
L2 LGV-SWA + (LGV’ - LGV-SWA’) 95.2+0.5 86.141.90 84.241.0 82.7+1.6
L2 LGV-SWA + RD 92.0+0.5 77.943.0 76.2+1.4 75.2428
L2 LGV (ours) 96.3+0.1 90.2+1.1 88.6+0.6 87.6+1.7

L2 1DNN + v (LGV’ - LGV-SWA’) 84.210.5 68.7+2.6 70.0x1.3 72.4415
L2 1 DNN + RD 74.6+0.5 55.843.1 56.1+0.6 59.9+3.2




Conclusion

LGV is simple yet effective to enhance black-box attack.

Overall, the improved transferability of LGV comes from the geometry of the
subspace formed by LGV weights in a flatter region of the loss.
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