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Hyperparameters & Parameters

Parameters
Internal values of the model learned during training
Learned values are called “Parameters Estimate”

E.g. feature and threshold of each node in a decision
tree

temp > 70 °F

Hyperparameters -
Values that influence the model and
cannot be learn

YES NO
E.g depth of a decision tree
YES NO YES NO

Rain No rain Rain No rain

Example of a Decision

Treeurce image:http://ebubekirsezer.com/en/decision-treekarar



Machine Learning Basics

Some considerations of
Statistical Learning Theory
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How to learn from data?
f(x;) : the model’s prediction for i-th example

Loss: a measure of how far a model's predictions are from its
label

In binary classification: L(y; , f(x1) =I(y; # f(x;))

Empirical Risk: Average of the loss across the dataset’s
examples

1 N
Remp((X, ), f) =5 2, L(i, f(x)
=1

Empirical Risk Minimization: finding a model that minimize
the empirical risk

min Remp((X,y), f)
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Decomposition of the error

R(fa) = B(fBayes) = (R(fa) = R(f5)) + (B(f5) — B(fBayes))

/ L 4 > \ o~
W e
estimation efror approximation error
your trained model

L estimation error
“best” unknown model approximation error ;

possible with the current set of features

best unknown model possible
with the chosen algorithm
(and the current set of features)

Source image: '
U. von Luxburg and B. Scholkopf. .
“Statistical Learning Theory: Small function Space F

Models, Concepts, and i
Results”,2011. used by the algorithm
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Decomposition of the error

R(fn) = R(fBayes) = (R(fa) = R(f5)) + (R(f5) = R(fBayes))

L o L% -
Y o ¥

estimation error approximation error

VARIANCE—— BIAS

Source image:

U. von Luxburg and B.
Scholkopf. “Statistical Learning
Theory: Models, Concepts, and
Results”,2011.
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Bias-Variance tradeoff

Biais
Large approximation error, small estimation error > Underfit

Variance
Large estimation error, small approximation error > Overfit

o estimation error
approximation error ¥

space E | of all function

Small function space F
used by the algorithm



Overfitting & Underfitting S"T

securityandtrust.u Il Ili I “
mEEEe TR

UNIVERSITE DU
LUXEMBOURG

Bias-Variance tradeoff

30 30 30
—— degree 1 (underfit) — degree 2 (fit) — degree 15 (overfit)

20 e  training examples 20 +  training examples 20 «  training examples

10
0
R -2 0 2710
Underfitting Good fit Overfitting
Oversimplification of the Learning the true Fitting the noise of the
data signal data

Source image:
A. Burkov, “Machine Learning
Engineering”.
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Bias-Variance tradeoff

Average error

A

High bias
(underfitting)

High variance
(overfitting)

Holdout error

Zone of solutions

Training error

———h

R GREECE CEETTEEEPETTERRP PP TEE

>
Lower ngher - Source image:

Model CompleXity » A. Burkov, “Machine Learning

Engineering”.
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You trained a binary classifier (for example a spam filter) and
you expect the same number of examples from both classes.
You obtained the following accuracies:

- accuracy computed on the train set (the examples that were used
to train the model): 99%

- accuracy computed on the holdout set (the examples that where
not used to train the model): 70%

Do you think that the trained model is overfitting?
- True
False
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Same context, but now you obtained the following accuracies:

accuracy computed on the train set (the examples that were
used to train the model): 88%

accuracy computed on the holdout set (the examples that
where not used to train the model): 87%

Do you think that the trained model is overfitting?

- True
- False



Question 3 S"'l'

securityandtrust.u Il Ili I I
L]

UNIVER SITE DU
LUXEMBOURG

Same context, but now you obtained the following accuracies:

accuracy computed on the train set (the examples that were
used to train the model): 61%

accuracy computed on the holdout set (the examples that
where not used to train the model): 60%

Do you think that the trained model is overfitting?

- True
- False
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You want to classify images of cats and dogs. Your model takes
as inputs pixels values of images, and outputs if the image
corresponds to a cat (0) or a dog (1).

For this task you choose a decision tree. You set up a maximum
depth of the tree of 8 (which means that for each image to
predict your model will use at most 8 conditions to recognize
a cat or a dog).

Is this model underfitting?
- True
- False
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Example of classification

Which one is overfitting, underfitting, or just a good fit?

Source image.


https://i.pinimg.com/originals/72/e2/22/72e222c1542539754df1d914cb671bd7.png
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Model 1... Model 2... Model 3...

...on Training data. o ..on Training data. 9 ..on Training data. 9

" 30 ® 10 error: 22.5% w37 % 3 erron 7.5% ® 37 #% (0eror: 0%
®37 ® B acc.:775% ®37 @ 3 ac.:925% ® 37 e 0 acc: 100%

..onTest data. € .onTest data. @ .on Test data. (@

® 32 = B error 23.8% ® 37 = 3 error11.3% ® 34 = § emror: 21.3%
®29 011 acc.:76.2% ®34 e 6 acc.:BB7% ® 29 e 11 acc.:787%

-,
= Model 2
g g good model Model 3
s g overfitting
g = high variance
25 Modeij e
2% underfitting
‘8 g lewee warianoe
‘6_ ‘ID. high bras
lowar mediuim high

. Source image.
model complexity


https://www.pinterest.com/pin/771593348641760553/

Overview of the life cycle

of ML project




ML project life cycle S"T

securityandtrust.lu “ Ili I II
IHeP8 e R

UNIVERSITE DU
LUXEMBOURG

Machine learning engineering

4 ' Data Engineer &
Business Analyst & Data Analyst Data fab S lor Data Analyst

1 | | I
| . | | |

Feature Model Model
engineering building evaluation

Goal
definition

Business

collection &
problem

preparation

-
-
-

-
- - -
e maccmm==" -

-

Model Model Model
monitoring serving deployment

Source image:
A. Burkov, “Machine Learning
Engineering”.

Figure 3: Machine learning project life cycle.
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Machine learning engineering

, ' Data Engineer &
Business Analyst & Data Analyst Data fab cler Data Analyst

| | I |
I | S I |

Business

Goal Feature Model Model
problem ‘

definition collectxor_l & engineering building evaluation
preparation

-
-
-

-
- - -
e maccmm==" -

-

‘‘‘‘‘‘‘‘

Model Model Model Model
maintenance monitoring serving deployment

Source image:
A. Burkov, “Machine Learning
Engineering”.

Figure 3: Machine learning project life cycle.
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When to use Machine Learning?

Consider using ML in those situations:

the problem is too complex for coding

the problem is constantly changing

It is a perceptive problem (e.g. image, speech, and video recognition)
it is an unstudied phenomenon

the problem has a simple objective (e.q. yes/no decision, single number
target)

when it is cost-effective
3 main costs: building the model, infrastructure to serve the soccconen

A. Burkov, “Machine Learning

model, model maintenance Engineering”.



Initial issue

When to NOt use Machine Learning?

i‘. I : : - - .i'rrlII P
S .IJ' I-rr = 1"’

F i

MACHINE lEﬂﬂiﬂHﬂ EVERYWHERE!



Initial issue S"'l'

securityandtrust.lu “ Ili I II
[ ]

UNIVERSITE DU
LUXEMBOURG

When to NOT use Machine Learning?

Probably better to not use ML when:

getting right data is too complex or impossible
no relation between features and labels

the phenomenon has too many outcomes while you cannot get enough
examples to represent those outcomes

- you know how to solve the problem using traditional software
development at a lower cost

e.g. you can fill an exhaustive lookup table manually by providing the
expected output for any input

- every decision made by the system has to be explainable
can be a GDPR requirement
idem for decision changes in similar situations over time

Source content:

- the cost of an error made by the system is too high A. Burkov, “Machine Learning

Engineering”.



Exercice

ML or not ML
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Among the following situations choose the ones where you would
use Machine Learning, and ones where it's much easier to use
traditional software development.

- Compute the best play in a Tic-tac-toe game:
https://en.wikipedia.org/wiki/Tic-tac-toe

- ldentify the human language of audio recordings (English, French, etc.)
- Develop the guidance system of a space rocket

- ldentify where are forests using Satellite imagery

- Develop a word processing software, like Word

- Extract content from thousands of websites which all have different
structures


https://en.wikipedia.org/wiki/Tic-tac-toe
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Machine learning engineering

, ' Data Engineer &
Business Analyst & Data Analyst Data fab cler Data Analyst

| | I |
I | S I |

Business

Goal Feature Model Model
problem ‘

definition collectxor_l & engineering building evaluation
preparation

-
-
-

-
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Model Model Model Model
maintenance monitoring serving deployment

Source image:
A. Burkov, “Machine Learning
Engineering”.

Figure 3: Machine learning project life cycle.
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Write down the elements of your problem

What is my objective?

What is my task?

What is an example?

What is the expected output?

What are acceptable behaviors? Unacceptable behaviors?

Think of performances, security, discriminations, privacy, ethical
issues, etc.

How to measure them?

Lastly, do | have available data? If not, can | build a dataset?

Adapted from:
A. Burkov, “Machine
Learning Engineering”.
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Example

Objective: be the best email provider
Task: automatically detect spam
Example: an email

Output: spam / ham

Acceptable behaviors:

classify most of the spam, measured by probability of detection
(sensitivity or recall) of at least 75%

Unacceptable behaviors:

(performances) should only classify a very small amount of ham as spam,
measured by specificity (true negative rate) of at least 95%

(security) spammer should not fond easy way to fool the spam filter
(privacy) email content should not be leaked from the trained model
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Content & figure from:

- - A. Burkov, “Machine
Conduce a Cost-Benefit Analysis

Learning Engineering”.

Learn more: https://en.wikipedia.org/wiki/Cost%E2%80%93benefit analysis

To estimate the cost consider:

- the difficulty of the problem
existing library

computation to train & serve the model

- the cost of data

can data be generated automatically?

cost of manual annotation
labelling cats & dogs images # doctors labelling X-ray scans

how many examples are approximately needed

Cost

- the needed accuracy
how costly is each wrong prediction?
lowest accuracy level below which the model is img 80% 90%

v

99% 99.9%

Accuracy


https://en.wikipedia.org/wiki/Cost%E2%80%93benefit_analysis
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Machine learning engineering

4 ' Data Engineer &
Business Analyst & Data Analyst Data fab cler Data Analyst
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Source image:
A. Burkov, “Machine Learning
Engineering”.

Figure 3: Machine learning project life cycle.
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Data collection & preparation
In industry: 80% building dataset, 20% playing with it

Steps:
- Existing data:

access to existing data (negotiation, paperwork, anonymization, etc.),
database work, merging datasets, etc.

- Creating a dataset
A can be very long

collecting data, statistical sampling, scraping, survey, labelling data,
etc.

- Data cleaning
Domain validity, outliers, errors, duplicates, expired data, etc.



MU

securityandtrust.lu “ Ili I II
[ ]

UUUUUU SITE DU

Data collection & preparation

Advices

Think of reproducibility from the beginning

you might have to extract the same data again in the future:
bugs, adding features, update data, etc.

avoid manual labor on data in Excel: error-prone & difficult to
traceback

Always check raw data and processed data
Don’t trust your implementation
Keep backups of both datasets

Don’t assume that your data is valid
Check domain validity (e.g. postal code, age)
Properly encode missing values (e.g. “-1”, “99999” > NaN)
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Machine learning engineering

, ' Data Engineer &
Business Analyst & Data Analyst Data fab cler Data Analyst

| | I |
I | S I |

Business

Goal Feature Model Model
problem ‘

definition collectxor_l & engineering building evaluation
preparation

-
-
e
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-
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Model Model Model Model
maintenance monitoring serving deployment

Source image:
A. Burkov, “Machine Learning
Engineering”.

Figure 3: Machine learning project life cycle.
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Goal

Transform raw data into tidy data with numerical or categorical
features

Example:

Plain text email > Frequencies of “$”, “!”, “#”, “viagra”, “buy”,
“mail”, etc.
Average length of uninterrupted sequences
of capital letters.
Etc.
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Tidy data

Follow principles of tidy data
- 1lrow <> 1 example
- 1 column €«-> 1 feature
- single dataset

Sources of messiness:
- Column headers are values, not variable names
- Multiple variables are stored in one column
- Variables are stored in both rows and columns
- Multiple types of experimental unit stored in the same table
- One type of experimental unit stored in multiple tables

Source content:
Wickham, H. (2014). Tidy Data.
Journal of Statistical Software,

nnnnnn
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Tidy data

person treatment result
John Smith a —
John Smith Jane Doe Mary Johnson Jane Doe a 16
treatmenta — 16 3 ) Mary Johnson a 3
treatmentb 2 11 | John Smith b 2
Jane Doe b 11
X Mary Johnson b 1
v

See more examples of bad practices:
https://www.jstatsoft.org/article/view/v059i10

Source images:
Wickham, H. (2014). Tidy Data.
Journal of Statistical Software,

nnnnnn


https://www.jstatsoft.org/article/view/v059i10
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Steps

1. Defining the features to represent well your examples
- Usually involve domain experts

- Document everything into a schema file (spreadsheet or Json with name,
type, definition, missing values, source, etc.)

2. Implement their computation
- reproducibility + checks
- data manipulation: filter, transform, aggregate, sort
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Summarizing data

You can compute mean & standard deviation for each feature to
aggregate

Example of Churn Analysis

User
User ID Gender Age Date Subscribed
1 M 18 2016-01-12
2 F 25 2017-08-23
3 (5 28 2019-12-19
4 M 19 2019-12-18
5 F 21 2016-11-30
Order User features
OderlD | Userld | Amount B D User ID Gender Age Mian Order |  Std Dev Mean Call | Std Dev Call
; 3 - oot mount _ |Order Amount| Duration Duration
5 P 18 501811208 — 2 F 25 .9 7. 235 0
° 2 i i 4 M 19 18 0 134.3 1427
4 2 8.3 2016-11-30
Figure 25: Synthetic features based on sample mean and standard deviation.
Call
Call ID User ID Call Duration Call Date
1 4 55 2016-01-12
2 2 235 2016-01-13
3 3 476 2016-12-17
4 4 334 2019-12-19
5 4 14 2016-11-30

Figure 24: Relational data for churn analysis.
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Steps

3. Encoding categorical features
- Models accept only numerical values
- Categorial features should be encoded as integers (one-hot encoded):
- “male”, “female”, “female” > 0,1, 1
- “bachelor”, “master”, “bachelor”, “high school”, “master” >

o B O O O
o O B O B
= O O +» O

4. Discretization of continuous variable (optional):
- Age: 8, 65,42, 15 > “-18”, “50+", “18-50", “-18" >

m o o B
o B o o
o o ~» o
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Steps

4. Missing data treatment
- Most models don’t accept missing data

- Solutions: imputation, categorization, etc.

5. Data Normalization of continuous features
- l.e. mean removal and variance scaling
- Almost all models performs better with normalized data

6. Other features transformation
- E.g, polynomial features: (Xj, X3) to (1, Xl,X2,X12,X1X2,X22)
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Practical advices
Informative features (high predictive power)
- Constant data are useless
- Totally unrelated features are not useful
- Duplicated features are not useful (e.g. weight in kg and in pounds)
Always check the presence of missing data

Use all data analysis tools to help you

- descriptive statistics (mean, standard deviation, min, max, quantiles,
absolute and relative frequencies, etc.), data visualization, etc.

Use small sample to develop and debug
- Unit test for each data extractor
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Deep Learning

No feature engineering in Deep Learning

Machine Learning

But has a cost

Representation
- number of examples Learning

(in millions) Classical ML
Deep

- complexity Learning
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When to NOT use Deep Learning?
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Machine learning engineering

, ' Data Engineer &
Business Analyst & Data Analyst Data fab cler Data Analyst

| | I |
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Goal Feature Model Model
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definition collectxor_l & engineering building evaluation
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-
-
-
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maintenance monitoring serving deployment

Source image:
A. Burkov, “Machine Learning
Engineering”.

Figure 3: Machine learning project life cycle.
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No free lunch theorem

Theory said that there is no universally best model woipert 1996)
Learning is impossible unless we make assumptions on the
underlying distribution.

performance

classifier 1
assifier 2

distributions

Figure 7. No free lunch theorem: Classifier 1 depicts a general purpose classifier.
It performs moderately on all kinds of distributions. Classifier 2 depicts a more
specialized classifier which has been tailored towards particular distributions. It S
behaves very good on those distributions, but worse on other distributions. Ac- U. von Luxburg and B.
cording to the no free lunch theorem, the average performance of all classifiers over Scholkopf. “Statistical Learning

. " . & .. . . Theory: Models, Concepts, and
all distributions, that is the area under the curves, is identical for all classifiers. Results”,2011.
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Practical advices

- Some empirical guide can help you, e.g this sklearn
flowchart:

scikit-learn
algorithm cheat-sheet

classification

NOT
WORKING

NOT
WORKING

regression

ES

NOT
WORKING few features
should be

important

NOT
WORKING

clustering

WORKING
0T

WORKING
YES

<10K 5 . .
NO dlmenSIOIlallty Source image:
reduction sklearn documentation

structure



https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html
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Practical advices

- Select models with the following criterion:
Explainability
Number of examples and features
Non-linearity of the data
Computational complexity
Prediction speed

- Choose model with best performances always evaluated
with Cross Validation

- Don’t forget to tune hyperparameters of model
Different strategies: grid search, random search, etc.



S8 BN g i B
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Model Building Strategy

Define a performance metric P.
Shortlist learning algorithms.
Choose a hyperparameter tuning strategy 7.
Pick a learning algorithm A.
Pick a combination H of hyperparameter values using the tuning strategy 7.
Use the training set and build the model M using the algorithm A parametrized with
hyperparameter values H.
Use the validation set and calculate the value of the metric P for the model M.
Decide:
1. If there are still untested hyperparameter values, pick another combination H of
hyperparameter values using the strategy strategy 7" and go to step 6.
2. Otherwise, pick a different learning algorithm A and go to step 5, or go to step 9
if there are no more learning algorithms to try.

. Return the model for which the value of metric P is maximized.

Source content:
A. Burkov, “Machine Learning
Engineering”.
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Source image:
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Figure 3: Machine learning project life cycle.
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Overfitting A

Always use Cross-Validation!
Shuffle the examples
Split them into 3 distinct sets:
1. Training set - for model training
2. Validation set - for tuning hyperparamers & choosing models
3. Test set > for independent evaluation of your final model

- Good practice: split before at the beginning of data preparation
step

Extreme case:

Your model simply memorizes its training examples but returns random
labels for new examples.

Need to evaluate on “unseen” examples.
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Choose an appropriate metric for your problem
Report it computed on the test set
Baseline:

performance of the simplest algorithm, usually random
labelling

human performance

Be careful to class imbalance problem
Consider credit card fraud detection
Probably have 1% of fraud among all transactions

Accuracy isn’t appropriate metric here: you can achieve 99%
accuracy, just by classifying all transactions as genuine, which
has O practical use

In that case, metrics
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30 30 30
—— degree 1 (underfit) — degree 2 (fit) — degree 15 (overfit)
20 e  training examples 20 +  training examples 20 «  training examples
10
0
B -2 0 2710
Underfitting Good fit Overfitting

Oversimplification of the
data

Learning the true
signal

Fitting the noise of the
data

Source image:
A. Burkov, “Machine Learning
Engineering”.
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Detecting Underfitting / Overfitting

A

High bias
(underfitting)

High variance
(overfitting)

Holdout error

Zone of solutions

Average error

Training error

———h

R ARt

>

Lower . Higher Source image:
Model CompleXlty g > A. Burkov, “Machine Learning

Engineering”.
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Data Leakage

Be careful to data leakage if your examples are not
iIndependent

Contamination

l |

[ Information available at the ] [ Information unavailable at the ]

prediction time prediction time

-

Prediction time Time

Source image:
A. Burkov, “Machine Learning
Engineering”.
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- List of datasets:
https://en.wikipedia.org/wiki/List of datasets for machine-
learning_research

- Getting started with Sklearn:
https://scikit-learn.org/stable/getting_started.html

- Sklearn cheat sheet:
https://www.datacamp.com/community/blog/scikit-learn-
cheat-sheet

- The hundred-page Machine Learning Book:
http://themlbook.com



https://en.wikipedia.org/wiki/List_of_datasets_for_machine-learning_research
https://scikit-learn.org/stable/getting_started.html
https://www.datacamp.com/community/blog/scikit-learn-cheat-sheet
http://themlbook.com/
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Quiz

ML or not ML
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Cost to increase accuracy

In general, the cost to train a model (ie. developers' time +
computational needs) grows linearly with its accuracy

« True

- False



Question 2 S"'l'
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Cross-validation

We want to predict the GDP of countries from its economics
caracteristics. We collect these variables for each year since
1900 and each countries. We shuffle all the data, keep-out 20%
for the test set, and train a time-series model on the 80%.

What are the issues with this model?
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Is it tidy data?

country year m0l14 ml524 m2534 m3544 m4554 mbd564 m65 mu {014

AD 2000 0 0 1 0 0 0 i — —
AE 2000 2 4 4 6 5 12 10 — 3
AF 2000 02 228 183 149 129 94 80 — 93
AG 2000 0 0 0 0 0 0 1 — 1
AL 2000 2 19 21 14 24 19 16 — 3
AM 2000 2 152 130 131 63 26 21 — 1
AN 2000 0 0 1 2 0 0 0 — 0
AO 2000 186 999 1003 912 482 312 194 — 247
AR 2000 97 278 094 402 419 368 330 — 121
AS 2000 — — — — 1 1 —_— =

Table 9: Original TB dataset. Corresponding to each ‘m’ column for males, there is also an
‘t’ column for females, £1524, £2534 and so on. These are not shown to conserve space. Note
the mixture of Os and missing values (—). This is due to the data collection process and the

distinction is important for this dataset. .

Wickham, H. (2014). Tidy Data.
Journal of Statistical Software,

nnnnnn
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Is it tidy data?

country year column cases

AD 2000 mO014 0
AD 2000 m1524 0
AD 2000 m2534 1
AD 2000 m3544 0
AD 2000 m4554 0
AD 2000 mbH564 0
AD 2000 m65 0
AE 2000 mO014 2
AE 2000 m1524 4
AE 2000 m2534 4
AE 2000 m3544 6
AE 2000 m4554 D
AE 2000 mbdH564 12
AE 2000 m65 10
AE 2000 {014 3
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Is it tidy data?
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country year

column cases

AD
AD
AD
AD
AD
AD
AD
AE
AE
AE
AE
AE
AE
AE
AE

2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000
2000

m014
m1524
m2534
m3544
m4554
mb564
mb65
m014
m1524
m2534
m3544
m4554
mb5H64
mb65
f014

[a—

—
WoO MO ik NDNOoODODOoC O OO

country year sex age cases
AD 2000 m 0-14 0
AD 2000 m 15-24 0
AD 2000 m 25-34 1
AD 2000 m 3544 0
AD 2000 m  45-5H4 0
AD 2000 m 5564 0
AD 2000 m 65+ 0
AE 2000 m 0-14 2
AE 2000 m 15-24 4
AE 2000 m 25-34 4
AE 2000 m 35-44 6
AE 2000 m  45-54 5
AE 2000 m  55-64 2
AE 2000 m 65+ 10
AE 2000 f 0-14 3

(a) Molten data

(b) Tidy data

Table 10: Tidying the TB dataset requires first melting, and then splitting the column column
into two variables: sex and age.

Source images:
Wickham, H. (2014). Tidy Data.
Journal of Statistical Software,
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Is it tidy data?
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id year month element dl1 d2 d3 d4 d5 d6 d7 d8
MX17004 2010 1 tmax —_ @ = @ = = e = = =
MX17004 2010 1 tmin s e e s ae e s e
MX17004 2010 2 tmax — 273 241 — — — — —
MX17004 2010 2 tmin — 144 144 — — — — —
MX17004 2010 3 tmax — = — — G271 — — —
MX17004 2010 3 tmin — = = — 42 — — —
MX17004 2010 4 tmax e e s ew e e e
MX17004 2010 4  tmin —_ = = = = e = —
MX17004 2010 5 tmax _— - =
MX17004 2010 5 tmin e e s ew e e e

Table 11: Original weather dataset. There is a column for each possible day in the month.
Columns d9 to d31 have been omitted to conserve space.

Source images:
Wickham, H. (2014). Tidy Data.
Journal of Statistical Software,

nnnnnn



Question 3

Is it tidy data?

id date element value
MX17004 2010-01-30 tmax 27.8
MX17004 2010-01-30 tmin 14.5
MX17004 2010-02-02 tmax 27.3
MX17004 2010-02-02 tmin 14.4
MX17004 2010-02-03 tmax 24.1
MX17004 2010-02-03 tmin 14.4
MX17004 2010-02-11 tmax 29.7
MX17004 2010-02-11 tmin 13.4
MX17004 2010-02-23 tmax 29.9
MX17004 2010-02-23 tmin 10.7
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Is it tidy data?
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id date element value id date tmax tmin
MX17004 2010-01-30 tmax 27.8 MX17004 2010-01-30 27.8 14.5
MX17004 2010-01-30 tmin 14.5 MX17004 2010-02-02 27.3 14.4
MX17004 2010-02-02 tmax 27.3 MX17004 2010-02-03 24.1 14.4
MX17004 2010-02-02 tmin 14.4 MX17004 2010-02-11 29.7 13.4
MX17004 2010-02-03 tmax 24.1 MX17004 2010-02-23 29.9 10.7
MX17004 2010-02-03 tmin 14.4 MX17004 2010-03-05 32.1 14.2
MX17004 2010-02-11 tmax 29.7 MX17004 2010-03-10 34.5 16.8
MX17004 2010-02-11 tmin 13.4 MX17004 2010-03-16 31.1 17.6
MX17004 2010-02-23 tmax 29.9 MX17004 2010-04-27 36.3 16.7
MX17004 2010-02-23 tmin 10.7 MX17004 2010-05-27 33.2 18.2

(a) Molten data (b) Tidy data

Table 12: (a) Molten weather dataset. This is almost tidy, but instead of values, the element
column contains names of variables. Missing values are dropped to conserve space. (b) Tidy
weather dataset. Each row represents the meteorological measurements for a single day. There
are two measured variables, minimum (tmin) and maximum (tmax) temperature; all other
variables are fixed.



Exercice

Define your ML project




Define your ML project S"T
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First, choose an application of Machine Learning. You can either
choose:

- one covered in the course (except spam filtering)
- one that you are interested in (be creative!)

- to take inspiration from a list of applications:
https://en.wikipedia.org/wiki/Machine learning#Applications

Don't worry, you can be creative and try (almost) anything!
There is no "wrong" answers.

Adapted from:
A. Burkov, “Machine
Learning Engineering”.


https://en.wikipedia.org/wiki/Machine_learning#Applications

Goal definition
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Then, write down the elements of your problem.

Objective
Task

Example

Output
Acceptable behaviors

How to measure these
acceptable behaviors

Unacceptable behaviors

How to measure these
unacceptable behaviors

The general goal of your system
The task of the sub-system considered

The unit of data fed one per one to the
model

The prediction of one exemple

Regarding the acceptable and
unacceptable behaviors, think in
terms of performances, fairness,
security, privacy, ethical issues,
etc. Explain only the topics that
make sense for your problem. One or
two sentences for each topic that
makes sense.
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Example

Objective: be the best email provider
Task: automatically detect spam
Example: an email

Output: spam / ham

Acceptable behaviors:

classify most of the spam, measured by probability of detection
(sensitivity or recall) of at least 75%

Unacceptable behaviors:

(performances) should only classify a very small amount of ham as spam,
measured by specificity (true negative rate) of at least 95%

(security) spammer should not fond easy way to fool the spam filter
(privacy) email content should not be leaked from the trained model



