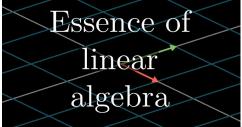
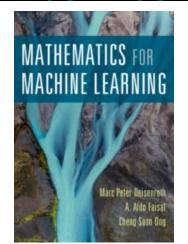
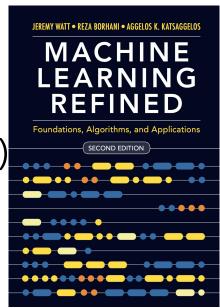

Notions of Linear Algebra & Optimization


Introduction to Machine Learning course


Resources

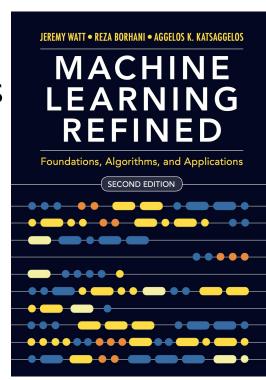
- Course material "Machine Learning Refined" book
 - Appendices B and C
 - Chapters 2 and 3
 - Drafts html available on github.com/jermwatt/machine_learning_refined
 - Physical book at LLC (recommended)
- Mandatory "Essence of linear algebra" series of 3blue1brown on youtube
 - Videos 1-8 to watch on you own by next session
 - Videos 9+ in 2 weeks
- Optional "Mathematics for Machine Learning" book
 - For more formal and detailed introduction to linear algebra for machine learning
 - Pdf available for free on mml-book.github.io
 - Chapters 2, 3, 4



Session 1 – Linear Algebra

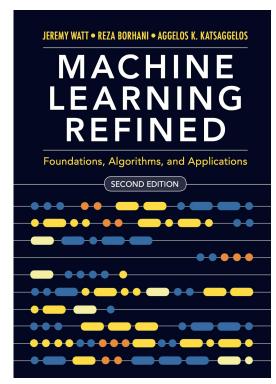
- 1. <u>"Vectors" video</u> from 3Blue1Brown
- 2. Outlines of Linear Algebra for Machine Learning
- Appendix C. Linear Algebra
 C.2 Vectors and Vector Operations
 C.3 Matrices and Matrix Operations
 C.4 Eigenvalues and Eigenvectors
 C.5 Vector and Matrix Norms

Session 2 – Zero-Order Optimization


1. Vector Gradients (to read on your own)

Appendix B. Derivatives and Automatic Differentiation B.2 The Derivative

B.4 The Gradient


- 2. Chapter 2. Zero-Order Optimization Techniques Read the following links or the slides
 - 2.2 The Zero-Order Optimality Condition
 - 2.3 Global Optimization Methods
 - 2.4 Local Optimization Methods
 - 2.5 Random Search

(optional) 2.6 Coordinate Search and Descent

Session 3 – First-Order Optimization

- 1. Chapter 3. First-Order Optimization Techniques
 - 3.2 The First-Order Optimality Condition
 - 3.3 The Geometry of First-Order Taylor Series
 - (optional, on your own)
 - 3.5 Gradient Descent
 - 3.6 Two Natural Weaknesses of Gradient Descent
- 2. <u>"Gradient descent, how neural networks learn"</u> video from 3Blue1Brown. Until 13:00. Optional, to watch on your own.

